Technical Description

FBP FieldBusPlug

V6

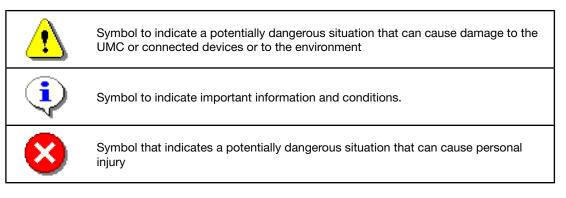
Universal Motor Controller UMC100-FBP

V6

Please note the following

Target group

This description is intended for use by trained specialists in electrical installation and control and automation engineering, who are familiar with the applicable national standards.


Safety requirements

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Using this Handbook

Symbols

This technical document contains markers to point the reader to important information, potential risks and precautionary information The following symbols are used:

Abbreviations

UMC	Universal Motor Controller				
DCS	Distributed Control System				
PLC	Programmable Logic Controller				
GSD	Device description file for PROFIBUS networks				
EDS	Device description files for DeviceNet networks				
FDT/DTM	Device driver technology for field devices. Specified from the FDT group.				
NC / NO	Normall closed / Normally open				
FBP	FieldBusPlug is the name for a group of products which allows to connect ABB low voltage control products to different fieldbusses.				

Related Documents

Technical Documentation	Document No. 2CDC 192 012 D02xx 2CDC 135 014 D02xx		
DTM manual for FBP devices			
Manual of the custom application editor			

V 6

Content

1 System Overview	7
Function Overview	7
Compatibility to UMC22	8
Description of Components	9
2 Installation	15
Assembly and Disassembly of UMC100-FBP and IO Modules	15
Connecting the IO Modules DX111 and DX122	15
Wiring Inputs and Outputs	16
Connecting Contactors	17
Motor Wiring	19
Connecting External Current Transformers (CTs)	20
Operation Details for Motors with Small Set Currents	21
Connecting the UMC100-PAN LCD Panel	22
Using the UMC100 in a PROFIBUS DP Network	23
Using the UMC100 in a DeviceNet Network	24
Using the UMC100 in a CANopen Network	25
Using the UMC100 in a MODBUS RTU Network	26
Usage in Draw-Out Systems	27
3 Commissioning	29
Commissioning Steps	29
Test Position	31
4 Configuring the Motor Protection Functions	33
Automatic Reset of Protection Faults	33
Long Start, Locked Rotor Protection	37
High Current Protection	
Low Current Protection	
Phase Loss Protection	40
Phase Imbalance Protection	40
Phase Sequence Protection	41
Motor Protection with Thermistor (PTC) acc. to EN 60947-8 (type A sensors)	41
Earth Fault Protection with CEM11	42
Voltage Dips, Load Shedding	43
5 Configuring the Motor Management Functions	47
Starting and Stopping the Motor	47
Emergency Start	52
Checkback Monitoring	53
Using the Digital UMC Inputs	53

Control Eurotion Transport	EC
Control Function Transparent	
Control Function Overload Relay	
Control Function Direct Starter (DOL) Control Function Reversing Starter (REV)	
Control Function Star-Delta Starter	
Control Function Pole-Changing Starter Control Function Actuator 1 - 4	
6 Configuring the Fieldbus Communication	
Setting the Bus Address	
Address Check when using UMC in Motor Control Centres	
Defining the Bus Fault Reaction	
Ignore Block Parameters	
7 Using Expansion Modules	
8 The LCD Control Panel UMC100-PAN	
Overview	
Monitoring Status Information	
The Menu Tree	
Adjusting Parameters	
Starting and Stopping the Motor	
9 Error Handling, Maintenance and Service	
Error Handling of the UMC	95
UMC100 Fault Indication	95
Fault Messages	95
Resetting Parameters to Factory Defaults	99
Resetting the Password	99
Reading and Resetting Maintenance Counters	99
DX1xx Status Codes	100
Replacing a UMC100	100
Replacing a DX1xx IO Module	100
Requesting Support	100
A1 Parameters and Data Structures on a Fieldbus	101
Monitoring Data	101
Command Data	101
Accessing Data on PROFIBUS	103
Accessing Data on Modbus	103
Accessing Data on DeviceNet	
Accessing Data on CANopen	
Parameter Organisation	104
Motor Management Parameters	104
Protection Parameters	
Communication Parameters	

Universal Motor Controller UMC100-FBP

V 6 Technical Description

	IO Module Parameters	112
	UMC Display Parameters (5)	113
	Function Block Related Parameters	114
	All Parameters Sorted by Parameter Number	115
	All Parameters Sorted Alphabetically	117
A2	Examples of Circuit Diagrams	119
	Direct Starter, Category 4	119
	Reversing Starter, Category 4	120
A3	Technical Data	121
	UMC100	121
	Performance Data	124
	UMC100-PAN	125
	DX111 and DX122	125

How to get started

There are many options for using the UMC100. Not all functions are required in all cases. Therefore the documentation is split into separate parts. You only need to read the parts that are relevant for your application.

The following manuals exist.

UMC100-FBP Technical Manual 2CDC 135 013 D02xx¹

This is the main technical description and must always be read carefully before using the UMC.

PBDTM 2CDC 192 012 D02xx¹

This manual describes the configuration tool (Device Type Manager) that can be used to configure and monitor the UMC100 and also other ABB control products like UMC22, softstarters and circuit breakers.

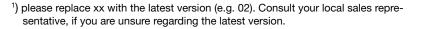
It is based on the standardised FDT/DTM technology.

If you plan to only configure the UMC100 with the device description files like GSD (for PROFIBUS) or EDS (for CAN) or via the LCD panel, you do not need to read this manual.

UMC100-FBP Custom Application Editor 2CDC 135 014 D02xx¹

This manual describes how to create customer-specific applications for the UMC100.

You only need to read this manual, if the logic built into the UMC100 does not fulfill your needs. As the custom application editor is part of the configura-


tion tool (Device Type Manager), it is highly recommended that you read the PBDTM manual first

FieldBusPlugs

Whenever the UMC100 is to be connected to a fieldbus, read the appropriate FieldBusPlug manual. Presently the following FieldBusPlugs can be used together with UMC100:

 PROFIBUS DP 	PDP22	2CDC 192 001 D02xx1
	PDQ22	2CDC 192 009 D02xx1
 DeviceNet 	DNP21	2CDC 193 001 D02xx1
 CANopen 	COP21	2CDC 194 002 D02xx1
 MODBUS RTU 	MRP21	2CDC 194 001 D02xx1

1 System Overview

V6

The Universal Motor Controller (UMC) is an intelligent motor controller for 3-phase AC induction motors combining the two classical functions of motor protection and motor management in a single device plus offering diagnostic and fieldbus communication. The device functions can be adjusted in a wide range to cover the needs of different industries. UMC100 is a further development of the UMC22.

Function Overview

Protection Functions

- The UMC provides comprehensive motor protection including phase failure detection, adjustable motor protection for stalled motors during startup or normal operation, configurable current limits to generate trips or warnings and many more.
- Overload classes 5, 10, 20, 30 and 40
- Thermistor motor protection (PTC)
- Earth fault detection when used in IT networks
- One device type covers the whole current range starting from 0.24 up to 63 A. For higher currents up to 850 A additional current transformers are available.

Fieldbus Communication

- The UMC100 can be integrated into different fieldbus networks such as PROFIBUS DP, DeviceNet, MODBUS and CANopen via the FieldBusPlug interface. All measured data, status signals and parameters can be accessed via fieldbus.
- It is also possible to use the UMC stand-alone (i.e. without FieldBusPlug).
- The motor protection and motor management is fully functional in the event of a bus failure.
- The fieldbus interface and the UMC can be separated. This offers many benefits in MCC applications especially for withdrawable systems.
- Parameterisation of the protection and control functions can be carried out with the device description files as defined by the different fieldbuses (e.g. GSD for PROFIBUS). In addition a Device Type Manager (DTM) offering a very convenient device configuration via a laptop or within a control system is also available.

Motor Management, Inputs and Outputs

- The UMC100-FBP provides six digital inputs, three relay outputs and one 24 V output. Therefore a wide number of control functions can be covered from the base device.
- If further inputs or outputs are needed, the basic device can be expanded with an expansion module. That provides an additional eight digital inputs, four relay outputs and an analogue output for driving an analogue meter.
- Supported standard configurations are direct starter, reversing starter, star-delta starter, actuator, inching mode and many more.
- The digital inputs can be configured in many ways to adapt the behaviour of the UMC100 to specific user requirements.
- To execute customer specific applications the UMC100 allows free programming of its internal logic. Function blocks for signal adjustment, boolean logic, timers, counters ... are available (see below).
- Different control stations (DCS, DI, Operation Panel ...) with individual, adjustable release opportunities are available.

Metering, Monitoring and Diagnosis

- Rapid, comprehensive diagnostics and operating status information is available on the UMC100 itself (LEDs), on the LCD panel (clear text messages), via fieldbus or on a laptop connected directly or via bus to the UMC.
- The fully graphic, multi-language LCD panel allows configuration, control and monitoring of the UMC and its inputs and outputs.
- Available diagnosis includes motor, bus and device status, maintenance counters such as number of starts and overload releases, remaining cooling time, etc.

Function Block Programming

- The UMC100 has a set of predefined applications built in. These applications are built on the basis of function blocks and can be used directly without the need for a programming tool.
- Custom applications can be created in a convenient way. The custom application editor is integrated in the PBDTM.
- You can monitor an application online to support you during development and testing.
- Control and protection related and general purpose function blocks are available: boolean logic, timers, counters, blocks representing the hardware, starter functions, ...
- There are basic function blocks like boolean blocks that have no parameters. But there are also very powerful function blocks such as the multifunction inputs or the starter blocks. Such blocks have parameters accessible via LCD and fieldbus. By setting the block parameters you can adjust the behaviour of the blocks and the application to your needs.

Please note: It is not necessary to change the function block application if the predefined applications fulfill your requirements.

But if you have specific requirements you can enable the customer application mode and adapt an existing application to your needs or even create your own one. This is described in the custom application editor manual (see section 'How to get started').

Compatibility to UMC22

Hardware

The UMC100 is mechanically compatible with the UMC22. The UMC100 does not need more space and can be used in all situations the UMC22 was used in.

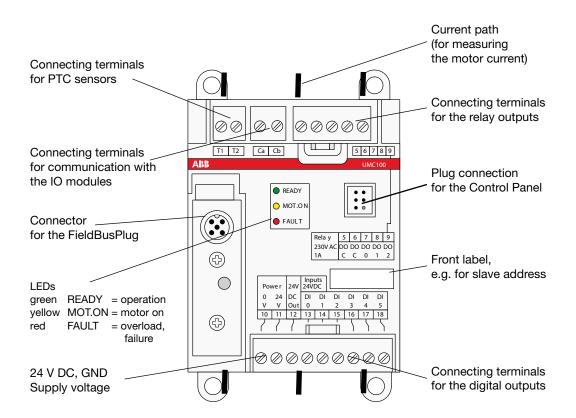
Please note that terminal 12 was previously a static 24 V output. It is now a switchable 24 V output that can signal a protection trip for example.

Fieldbus Interface

Both devices follow the PNO profile for motor starters regarding their cyclic command and monitoring telegram. This means the first two bytes within the cyclic telegrams are the same in both devices. But as the UMC100 provides many new functions, the command and monitoring telegrams are now longer, so that additional data can be transferred e.g. the status of the inputs of a connected expansion module.

To configure the new functions also the number and organisation of the parameters have changed. This means that the UMC100 looks different from a control system integration perspective.

It is not possible to just replace the UMC22 with a UMC100. Changes in the device integration packages are necessary.



Description of Components

UMC100-FBP

V6

The following diagram shows the terminals, monitoring and operating elements of the UMC100-FBP

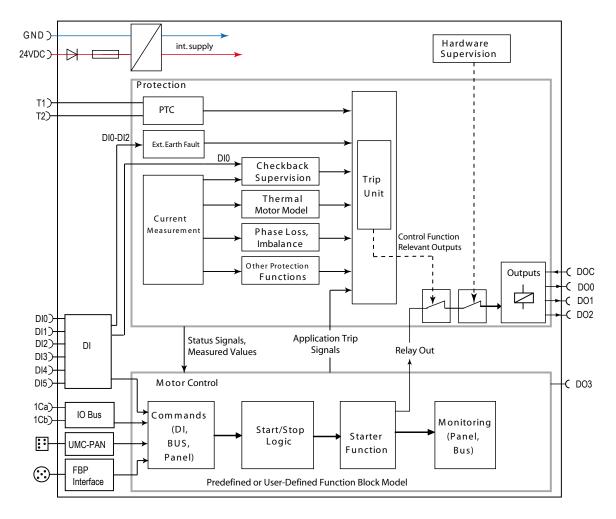
The UMC100 follows the profile for motor management starters as defined in the PNO profile sheet for low voltage switchgear devices.

After powering on, the UMC100 performs a self-test of its hardware and checks the configuration for consistency.

In the event of a failure, a self-test fault is generated and signalled. After a successful self-test the UMC enters the operational state.

The next diagram shows the major function blocks of the UMC100 and the data flow among them.

The upper main block contains the protection-related functions. Signals from different signal sources are evaluated from the trip unit. Depending on the configuration either a trip or a warning can be created. The motor protection always has priority regarding control of the relay outputs. In case of a protection trip the relevant contacts are opened and thereafter the motor is stopped. If the device fails, the watchdog opens the relay outputs automatically for safety reasons.


The main inputs for motor protection are the current measurement and the thermistor sensor. The current measurement provides information about the actual motor current in the three phases. An advanced motor model uses the current information and calculates the corresponding motor temperature. At a certain level it will trigger an overload trip.

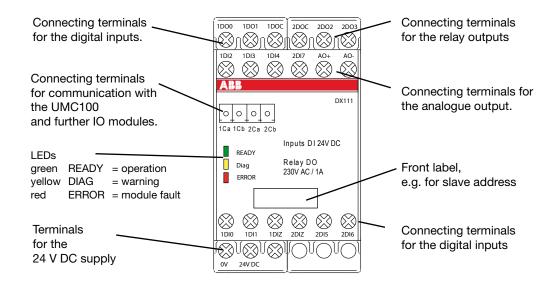
The thermistor input measures the PTC resistance. Based on the resistance the cold and hot state of the motor can be distinguished. Also short-circuit or wire break conditions can be detected.

The lower main block contains the control-related functions. Incoming commands from the panel, the digital inputs or the fieldbus are ranked from the control place selection block according to the user settings and then forwarded to the active starter function.

The starter function block controls the relay outputs depending on its input signals and the actual state. Additionally monitoring signals are prepared for the LCD display, the UMC100 signalling LEDs and the fieldbus monitoring and diagnosis telegrams.

All these blocks run in the so-called logic engine. It is possible to change the application which is running there but usually the predefined applications will be sufficient. Further information about the creation of custom applications can be found in the Custom Application Editor manual.

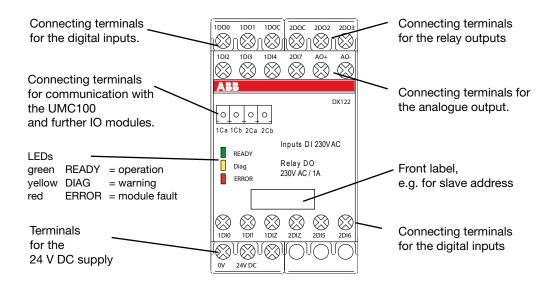
Overview of the major building blocks of UMC100-FBP and the data flow among them.



DX111-FBP

V6

The DX111-FBP expands the input and output channels of the UMC100. It provides eight digital inputs for 24 V DC, four relay outputs and a current output to drive an analogue instrument.

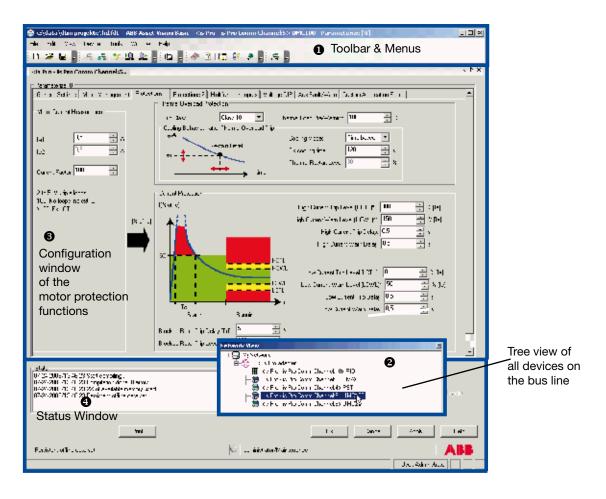

The following diagram shows the terminals and monitoring elements of the DX111-FBP module.

DX122-FBP

The DX122-FBP expands the input and output channels of the UMC-FBP. It provides eight digital inputs 110 V AC - 230 V AC, four relay outputs and a current output to drive an analog instrument.

The following figure shows the terminals and monitoring elements of the DX122-FBP module.

Configuration Tool


Asset Vision Basic is the tool to configure the UMC100-FBP via a Laptop. Asset Vision Basic is jointly used between ABB Instrumentation and ABB Control Products. Therefore it enables a wide range of ABB products to be configured such as motor controllers, soft starters, flow meters and many more.

It is based on the FDT/DTM standard which also enables the configuration of third-party products that are connected at the same bus segment.

You can parameterise the UMC100-FBP both online and offline.

In offline mode the configuration can be fully prepared and then later on loaded into the device(s).

If a connection to a device exists, monitoring of all measured values, maintenance counters etc. is possible.

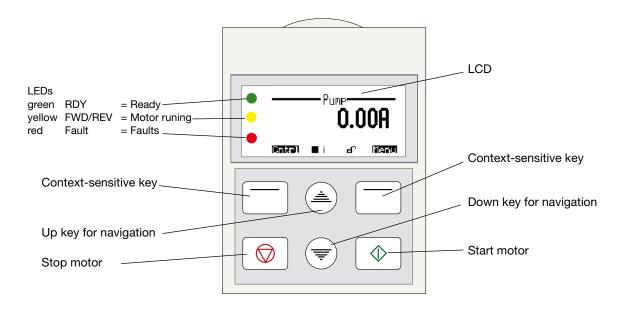
▲ UMC100-FBP configuration tool Asset Vision Basic with the motor protection configuration window (3). In (1) the toolbar of the tool is shown. (2) provides a network view with all the devices accessible on the PROFIBUS DP line. (4) contains a window to display messages and buttons to quit or adopt the parameter changes.

The diagram above shows the configuration tool which allows intuitive configuration of all UMC100 functions.

In this example the window to configure the motor protection parameters is shown. In similar windows all other parameters can be configured.

Other views enable the monitoring of the diagnosis information, the visualisation of bus monitoring, command data and much more.

UMC100-PAN LCD Panel

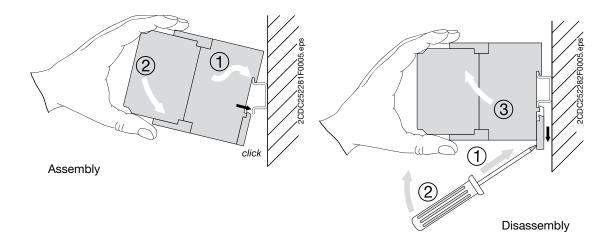

V6

The Control Panel UMC100-PAN is an accessory for the UMC100 and can be used for monitoring, control and parameterisation of the UMC100. It can be directly plugged on the UMC100 or mounted separately on the panel door using the mounting kit.

Some of the main features are:

- fully graphic, multi-language user interface
- start and stop of the motor and acknowledgement of faults.
- display of measured values (e.g. motor current in A/% or start-up time) and status of inputs and outputs
- parameterisation

The following diagram shows the UMC100-PAN with the monitoring and operating elements:


2 Installation

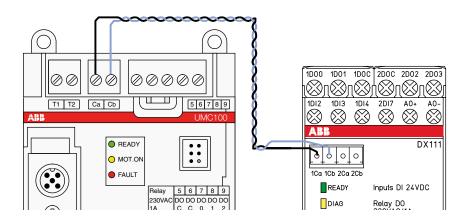
V6

Assembly and Disassembly of UMC100-FBP and IO Modules

You can attach the UMC100 and the IO modules as follows:

- Snap-on mounting onto a 35 mm standard mounting rail, without tools (UMC100 and IO devices)
- Mounting via screws on a mounting plate (UMC100 only)

Connecting the IO Modules DX111 and DX122


The modules DX111 and DX122 enable the number of and type of inputs and outputs provided by the UMC100 to be increased.

The UMC100 can be expanded with one digital IO module. Thus, 8 additional binary inputs, 4 additional relay outputs and 1 analogue output for driving an analogue indicator instrument are available.

The IO modules are connected via terminals Ca and Cb (see below) to the UMC100. Because of limited installation space it might be desirable to mount the IO modules separately from the UMC100. This can be carried out without any problems as long as the maximum cable length is not exceeded.

The following limits apply when connecting an IO module:

- Either the DX111 or DX122 can be connected. It is not possible to connect both of them to the UMC100.
- The distance between the UMC100 and the IO module must not be longer than specified in the technical data section.

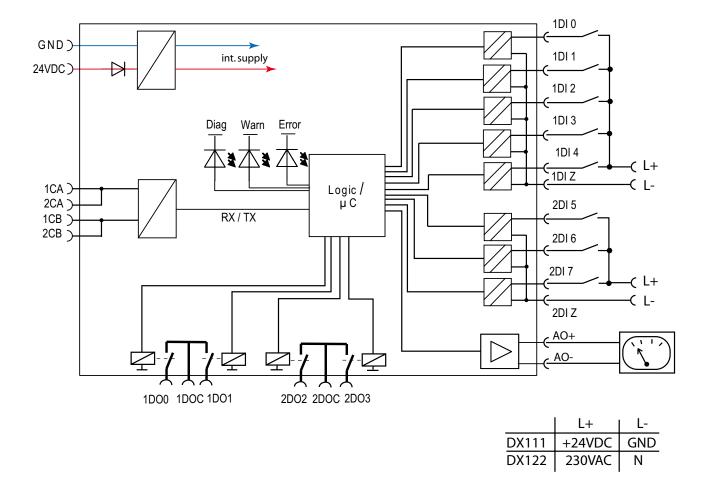
Wiring is shown for module DX111. It is the same for other modules.

Wiring Inputs and Outputs

The diagram below shows the block diagram and wiring for both the DX111 and the DX122 modules. The digital inputs are galvanically isolated. The common ground for the inputs 1DI0-4 must be connected to 1DIZ.

The common ground for the inputs 2DI5-7 must be connected to 2DIZ.

If no separate grounds are necessary, 1DIZ and 2DIZ can be connected to each other.


The relay outputs groups 1D01/1D02 and 2D01/2D02 have separate roots each.

The analogue output (AO+/AO-) is intended to drive an analogue instrument which can be used to display the motor current. It can be adjusted as a current or voltage output. Open wire and short-circuit faults are detected. Supported output levels are:

- 0/4 20 mA
- 0 10 mA
- 0 10 V

The output is scaled in a way that a motor current of 0% results in 0% at the output and a motor current of 200% results in 100% output level.

Example if the output is set as voltage output: 0% motor current -> U_{out} =0 V, 200% motor current -> U_{out} = 10 V.

▲ Wiring diagram of the DX111-FBP and DX122-FBP module.

V6

iechnical Descriptio

V6

Connecting Contactors

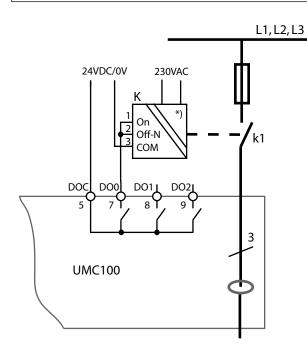
Use spark suppression for larger contactors and also interface relays to maintain the service life of the UMC100 internal relays. For interfacing contactors with peak current > 0.5 A (Types A50 and larger) use an interface relay as shown below.

Contactor type	Inrush current [A]	Holding current [A]	Inrush power [VA]	Holding power [VA]	VDR for spark suppression (ABB type)	Service life of UMC100 relays [Switching cycle]
B6S-30-10-2.8 ¹⁾	0.01	0.01	2.4	2.4	-	500000
A9, A12, A16	0.30	0.03	70	8	RV5/250	500000 ²⁾
A26, A30, A40	0.52	0.05	120	12	RV5/250	400000
A50, A63, A75 ^{3), 5)}	0.78	0.08	120	12	RV5/250	300000 ²⁾
A95, A110 ⁵⁾	1.52	0.10	180	18	RV5/250	use interface relay
A145, A185 ⁵⁾	2.39	0.15	550	35	RC5-2	use interface relais
AF210, AF260, AF300 ⁴⁾	2.04	0.04	470	10	-	500000
AF400, AF460, AF580, AF750 ⁴⁾	3.8	0.05	890	12	-	500000

Actual ABB contactors - all currents for 230 V AC (Extract):

¹⁾ The contactor B6S-30-10-2.8 (24 V DC) is recommended as interface contactor due to its internal spark suppression.

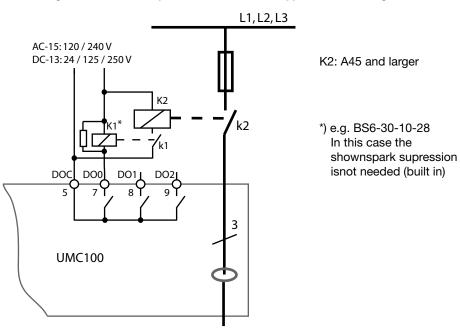
²⁾ All values only for contactors with spark suppression, see appropriate column. Use interface contactor if longer service life is required.


³⁾ Interface contactor is recommended (e.g. B6S-30-10-2.8).

⁴⁾ The contactors for higher currents are available with electronic interface only

⁵⁾ Also available with electronic interface (AF50 to AF185).

Spark suppression is necessary for all types except the AF types to maintain a reasonable service life.

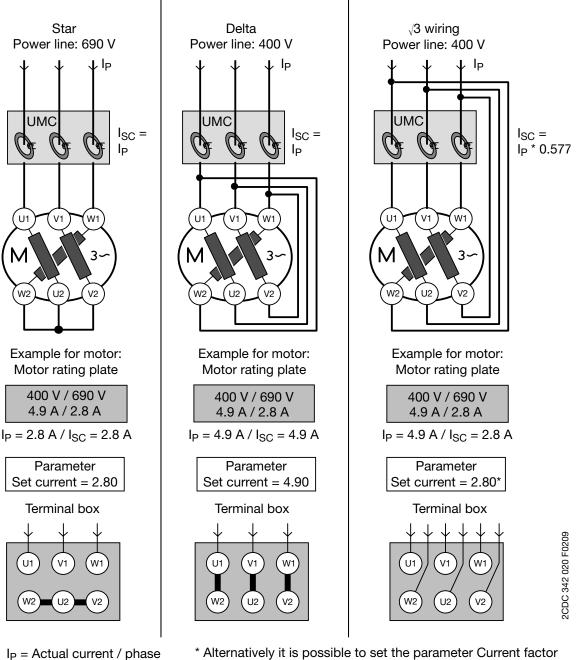


Connection of contactors with electronic interface (AF types) to the UMC100-FBP.

^{*)} Slide switch on the left side to position 'PLC' (up)

Interfacing contactors with peak current > 0,5 A: Types A50 and larger

Connection of contactors with peak currents > 0.5 A (ABB types A50 and larger) to the UMC100-FBP. For checkback the auxiliary contact of the main contactor has to be used!


Motor Wiring

Have a look at the wiring of the motor to set the correct nominal current I for perfect motor protection.

Example:

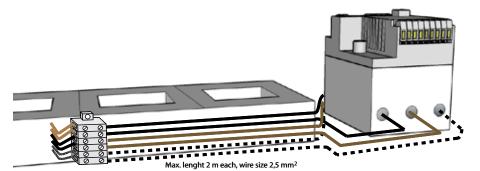
V6

For inner delta wiring the parameter *Current Factor* can be changed to 1.73 to display the actual currents on the Control Panel and in the control system. The delta 3 circuitry is normally used for larger motors to reduce the current transformer size.

- * Alternatively it is possible to set the parameter Current factor to 1.7 and the parameter Set current to 4.9 A.
- I_{SC} = Set current Related Parameters:
- Nominal current le1
- Nominal current le2 (for two speed starters only)

Connecting External Current Transformers (CTs)

If the nominal motor current I_e is above 63 A an external current transformer (CT) must be used. The external CT transforms the primary current flow in a smaller secondary current according to the transmission ratio. This smaller current is then measured from the UMC100. With the parameter *Current Factor* the current transformer transmission ratio can be configured. So the


With the parameter *Current Factor* the current transformer transmission ratio can be configured. So the UMC100 knows the actually flowing primary current which is then used for the internal processing.

All types of protection current transformers of class 5P10 (Standard EN/IEC60044) can be used. The selection should be made based on the requirements:

- Secondary current (= current in the UMC100) range about 4A.
- Through-hole area if single strands are used
- Max. load: 60 m Ω (UMC100: 30m, conductor: wire size 2.5 mm², length 2 m each: 30 m Ω)
- Requirements for current transformers acc. to IEC60044-1 table 11 and 14:

Measuring of	Protection c.t. class 5P10					
Actual / nominal current	5 %	20 %	100 %	120 %	100 %	1000 %
Max. inaccuracy	3	1.5	1	1	1	5

These values must be guaranteed by the current transformer supplier. The inaccuracy is added to the inaccuracy of the UMC100. The pass-through direction of the strands is important if the phase sequence supervision is enabled. For currents up to 850 A, space saving combinations are recommended.

Type / Korc-Current Hole Max. Link kit (bar) Recom-Secondary Factor to be mendedfactor set in the wire type for contactype current area UMC (e.g. (Default WxH tor (Order code current range size = 1.0) [A] via LCD [mm²] [mm²] see chapter 6.) range [A] panel) UMC100 0.24-63 100 16 1 -11 _ alone (default) 4L185 R/4 60-185 46.2 1.3-4 4620 22x28 2x70²⁾ DT450/A185 -> 1) AF145, AF185 4L310 R/4 180-310 77.5 2.3-47750 22x28 2x70²⁾ DT450/A300 -> 1) AF210-AF300 5L500 R/4 300-500 125 2.4-4 12500 41x22 3x702) DT500AF460L²⁾ 1) ->AF400, AF460 5L850 R/4 500-850 212.5 2.4-4 21250 41x22 DT800AF750L2) -> AF580, AF750

¹⁾ Wire size has to be fixed acc. to IEC/EN 60204

²⁾ Link kits for star-delta starter (others see catalogue)

If current transformers of other suppliers are used the table above may serve as a calculation basis for the current factor.

Example: Type 5L500 R/4 means: Primary 500 A, secondary 4 A, current factor 125.

In the UMC to real motor current has to be set e.g. 500A.

Related parameter: Current Factor, I, I,

Operation Details for Motors with Small Set Currents

When using a UMC100-FBP in an environment with very strong magnetic fields and a small set current at the same time, the current measurement can deviate a few percent from the real current. Therefore the displayed motor current is too high and an overload trip occurs too early.

Very strong magnetic fields can originate from a contactor directly mounted beside the UMC100, closely passing current links or stray fields caused by large transformers. When observing the effect, the distance between the UMC100 and the contactor shall be increased to about 5 cm or the UMC100 shall be rotated by 90 degrees or the motor wires shall be looped through the UMC100 two to five times.

When looping the motor wires multiple times, the parameter *Current Factor* must be adjusted according the number of loops. I.e. the parameter must be set to two if the wires are looped through the UMC100 two times. Two to five loops are supported. The displayed current and the current transmitted over the fieldbus are automatically corrected by the UMC100.

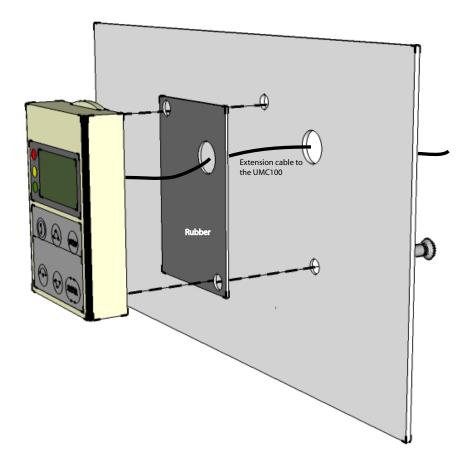
Please note that the adaptation of the current factor for $\sqrt{3}$ circuits and multiple loops through the UMC100 are not possible at the same time.

V6

Via fieldbus also higher values than five e.g. six can be set. The UMC100 ignores such values and creates a parameter fault. Values above 100 are possible and used in combination with external current transformers (see previous page).

Related parameters:

Current Factor



The UMC100-PAN LCD panel can be used for the following purposes:

- Configuration of the UMC100-FBP
- Control of the motor and fault reset
- Monitoring of all IO signals, motor current and maintenance counters

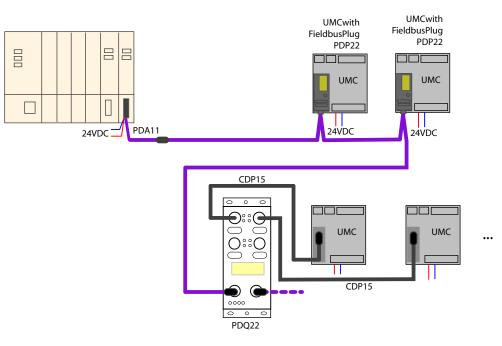
The operator panel UMC100-PAN is mainly designed for mounting it on the front panel of a motor feeder or in a switchgear cabinet. A door mounting kit is provided for this purpose. With the mounting kit the degree of protection is IP54.

The UMC100-PAN can also be plugged directly on the UMC100 itself.

The UMC100-PAN is incompatible with the UMC22-PAN and cannot be used with the UMC22-FBP but only with UMC100-FBP.

V 6 Technical Description

Using the UMC100 in a PROFIBUS DP Network


PROFIBUS DP is at present one of the most common fieldbus for industrial applications worldwide and is standardised in IEC61158 together with other fieldbus protocols. The PROFIBUS DP standard has defined different network topologies. The most commonly used one is the 'Party Line' topology where one device is connected after the other.

PROFIBUS DP has evolved over time. The first services offered by PROFIBUS DP are the so-called V0 services. They define block parameterisation, configuration, cyclic data exchange and diagnosis information exchange. DP-V0 only allows the complete parameter set to be written in one block. The bus master sends the parameter block to the slave during powering up of the slave/device. Some control systems also allow the sending the parameter block during normal operation.

Later the PROFIBUS DP-V1 specification introduced new acyclic read/write services within the context of the PROFIBUS DP-V1 expansions. These acyclic services are inserted into special telegrams during ongoing cyclical bus operation and thus ensure compatibility between PROFIBUS DP-V0 and PROFIBUS DP-V1.

To integrate the UMC100-FBP into a PROFIBUS network either the PDQ22-FBP or the PDP22-FBP FieldBusPlugs can be used. PDQ22-FBP allows to connect up to four UMC100s via one bus node. PDP22-FBP integrates one UMC100 only (i.e. one bus address per UMC100).

The diagram below shows the sketch of a PROFIBUS bus line with UMC100s integrated via PDP22 and PDQ22. A detailed description about the creation of PROFIBUS lines using PDP22 and PDQ22 is available in the FieldBusPlug manuals.

PROFIBUS Line with PDP22 and PDQ22. Wires in purple are PROFIBUS cables. Wires in black (CDP15) are standard extension cables to connect PDQ and UMC100.

Integration with the GSD File

Besides the physical connection of a device to a PROFIBUS line, the engineering of the whole PROFIBUS system in the PROFIBUS master is necessary. Every modern PLC (Programmable Logic Controller) or DCS (Distributed Control System), that can be used as PROFIBUS master, offer the possibility to configure and parameterise devices connected to the master.

Electronic data sheets are used as a basis. In the PROFIBUS world these electronic data sheets are called GSD files. Within such a file all properties relevant for operation of the slave are described (e.g. supported baud rates, max. number of modules etc.).

The GSD file ABB_0A09.GSD (for PDQ22) and ABB_34E0.GSD (for PDP22) are contained in the software Engineering Package

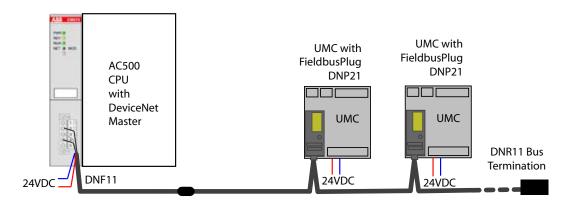
PBE91-FBP.010x 1SAJ924091R010x.ZIP

The ZIP file can be obtained from ABB's web site (http://www.abb.de -> Control Products and Systems) or on the FBP System CD (2CDC 190 008 E04xx). Please ask your local sales office for it.

The UMC100 can be parameterised using the GSD file. But due to parameter length limitations only the most important parameters can be configured with the GSD file in the event that the PDQ22 is used. For PDP22 this limitation does not exist.

Integration with the Device Type Manager (DTM)

In addition to the option of integrating devices with GSD files more and more modern control systems support the FDT/DTM concept. FDT (Field Device Tool) technology standardises the communication interface between field devices and systems.


For the UMC100 (and also other FBP devices) a DTM is available which can be ordered separately. Consult the PBDTM manual for more information.

For creating a customer-specific application the DTM must be used! Parameterisation of the control and protection parameters can also be carried out with the GSD file only.

Using the UMC100 in a DeviceNet Network

DeviceNet is based on the Controller Area Network (CAN) technology and mostly used in the Americas. To integrate the UMC100 into a DeviceNet network use the DNP21-FBP FieldBusPlug. The figure below shows the sketch of a DeviceNet line with DNP21-FBP, two UMC100s and available accessories. More details are available in the technical manual of the DNP21-FBP.

Integration with the EDS File

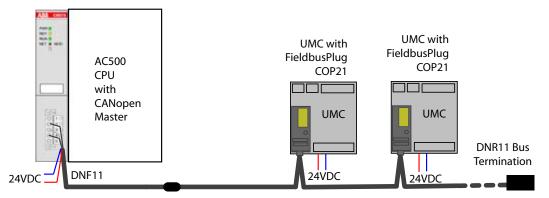
V6

Besides the physical connection of a device to a DeviceNet line, the integration and engineering of the devices in the DeviceNet master is necessary.

An electronic data sheet is provided for the UMC100 for that purpose. In the DeviceNet world these electronic data sheets are called EDS files. Within these files all the properties relevant for operating the slave are described (e.g. supported baud rates, parameters, ...).

> Configuration of the control and protection parameters of the UMC100 can be carried out using the EDS file. For creating a customer-specific application the DTM with UTF21 communication adapter can be used!

The CANopen fieldbus also uses EDS files. But these are different from the DeviceNet ones. In case of problems make sure you use the correct file!


The EDS file ABB_UMC100.eds is contained in the Software Engineering Package

DNE91-FBP.010x 1SAJ923091R010x.zip

The ZIP file can be obtained from ABB's web site (http://www.abb.de/stotz-kontakt) or on the FBP Sytem CD (2CDC 190 008 E04xx). Please ask your local sales office for it.

Using the UMC100 in a CANopen Network

CANopen is based on the Controller Area Network (CAN) technology and often used within large machines or vehicles. To integrate UMC100 into a CANopen network use the COP21-FBP FieldBusPlug. The figure below shows the sketch of a CANopen line with two COP21-FBP, two UMC100s and available accessories. More details are available in the technical manual of COP21-FBP.

▲ CANopen Line with COP21 and UMC100. Please note that the accessories of CANopen and DeviceNet are the same. Do not be confused by the fact that the DNF and DNR have a 'DN' in their names.

Integration with the EDS File

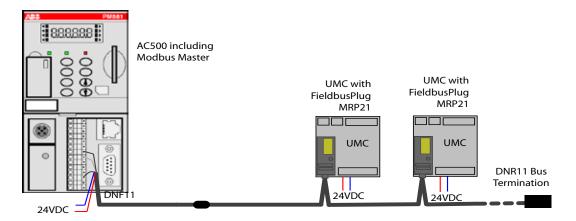
Besides the physical connection of a device to a CANopen line, the integration and engineering of the devices in the CANopen master is necessary. For that purpose an electronic data sheet is provided by ABB. In the CANopen world these electronic data sheets are called EDS files. Within these files all the properties relevant for operating the slave are described (e.g. supported baud rates, parameters, ...).

Configuration of the control and protection parameters of the UMC100 can be carried out using the EDS file. For creating a customer-specific application the DTM with UTF21 communication adapter can be used!

The DeviceNet fieldbus also uses EDS files. But these are different from the CANopen ones. In case of problems make sure you use the correct files!

The EDS file FBP_CO_UMC100.eds are contained in the Software Engineering Package

COE91-FBP.010x 1SAJ923092R010x.zip


The ZIP file can be obtained from ABB's web site (http://www.abb.de/stotz-kontakt) or on the FBP System CD (2CDC 190 008 E04xx). Please ask your local sales office for it.

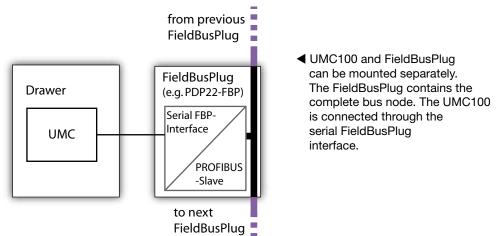
Using the UMC100 in a MODBUS RTU Network

The MODICON Modbus® RTU protocol is a widely used network protocol based on the RS485 physical layer. It is provided in many PLCs that do not offer any other fieldbus. To integrate the UMC100 into a Modbus network, use the MRP21-FBP FieldBusPlug.

The diagram below shows the sketch of a Modbus line with two MRP21-FBP, two UMC100s and available accessories. More details are available in the technical manual of MRP21-FBP.

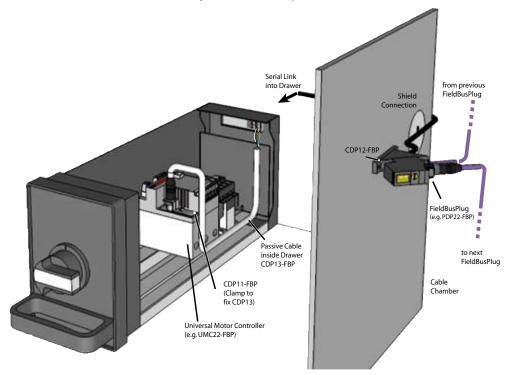
▲ Modbus Line with MRP21 and UMC100. Please note that the accessories of CANopen and DeviceNet are the same. Do not be confused by the fact that the DNF and DNR have a 'DN' in their names.

There are no device description files defined by the Modbus standard. This makes it more difficult to parameterise Modbus devices via the bus. Therefore we recommend that you parameterize the UMC100 either using the UMC100-PAN or using a laptop with the UTF21-FBP communication adapter.



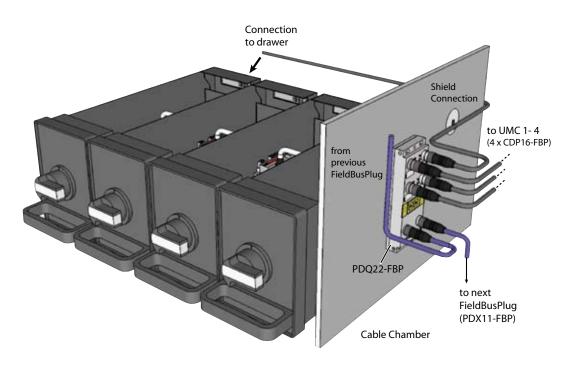
Usage in Draw-Out Systems

V6


The withdrawable technique is often used in industries where the highest availability and shortest downtimes are required. In the event of an error in a drawer, the replacement with a spare drawer shall be made as fast as possible. UMC100 has several unique features supporting its use in drawer systems:

• The separation of FieldBusPlug (bus node) and UMC100

- In draw-out installations the UMC100 is usually mounted inside the drawer whereas the FieldBusPlug is mounted in the cable chamber. This ensures that no trunks are required but a straight bus line can be implemented. A very stable bus communication even at high baud rates is the result!
- In the event of a drawer replacement the FieldBusPlug stays active and sends a diagnosis message to the control system that the UMC100 is missing. Even more important the fieldbus address is stored in the FieldBusPlug. If a new UMC100 is connected the old bus address is automatically used. There is no need for setting a new address! See parameter *Address Check* for additional details.


All necessary auxiliaries required for the installation are available. See the diagram below on how to use a PDP22, MRP21 or COP21 in a drawer system. The example shows PDP22 for PROFIBUS.

▲ FieldBusPlug and accessories in a draw-out installation. The fieldbus node is outside the drawer so no drops are required.

The following diagram shows the usage of the PDQ22 in a drawer system with the available accessories.

▲ Using PDQ22-FBP in a withdrawable installation allows the connection of up to four UMC100s. The PROFIBUS node is mounted outside the drawers.

3 Commissioning

This chapter provides an overview of the required commissioning steps. For details about the single steps please consult the related chapters.

Commissioning Steps

To commission the UMC100-FBP, proceed as follows:

A) Wiring

V 6

Wiring and 24 V DC / 0 V connection:

Hard wire with switch apparatus and other components acc. to the application requirements.

Connection of contactors: Use spark suppression, for larger contactors also interface relays to maintain a good service life of the UMC100 internal relays.

Motor wiring: Check the wiring of the motor to ensure correct setting of le for perfect motor protection. When using UMC100 with motors of nominal currents < 1 A please read section "Operation Details for Motors with Small Set Currents". If the nominal motor current is above 63 A read section "Connecting External Current Transformers (CTs)" on how to use the UMC100 with external current transformers.

If an IO expansion module is used connect the UMC100 with the IO module and hard wire the inputs of the expansion module acc. to the application requirements.

B) Switching on the power supply

Switch on the supply voltage of the UMC100. If connected with a FieldBusPlug also ensure that the FieldBusPlug is powered. In the fault-free state, the green UMC100 LEDs should light up.

LEDs on the UMC100:

Green (ready) On Yellow (motor running) Off Red (fault/trip) Off

LEDs on the FieldBusPlug:

In fault free state H1/H3 (left upper and lower LEDs) should light up. If no cyclic bus master is active H2 (upper right LED) is flashing. See the technical description of the FieldBusPlug in use.

Continue with Step C) if fieldbus communication is required or continue with step D) to start the configuration. In case of an error use the LED/UMC100-PAN information of the UMC100/FieldBusPlug to find out the cause of the fault (see section "Fault Handling").

C) Setting the fieldbus node address

Before connecting the UMC100 to a fieldbus network (e.g. PROFIBUS) set the fieldbus address using UMC100-PAN. That means the slave address is directly adjusted and stored in the UMC100. To change the bus address, press *Menu*, select *Communication* and then *Bus Address*. Adjust the address within the limits defined by the fieldbus type (for PROFIBUS e.g. 2 to 125).

D) Start configuring the UMC100 via LCD panel, laptop or control system

The following parameters need to be adjusted

- Motor management related parameters e.g. the control function (see section "Configuring the Motor Management Functions")
- Parameters defining how to start and stop the motor from the different control places (see section "Configuring the Motor Management Functions -> Starting and Stopping the Motor").
- Parameters related to the motor and its protection functions (see section "Configuring the Motor Protection Functions").
- Parameters related to the fieldbus communication interface (see section " Configuring the Fieldbus Communication")
- Other settings such as the panel language or the usage of a connected DX1xx module.

Select the Required Configuration Mode for the UMC100-FBP

The UMC100 can be configured in different ways depending on your system setup:

Configuration via LCD panel

The device address has to be configured via LCD panel. And it is possible to adjust the other protection and control parameters of the UMC100 using the panel. The configuration via LCD panel is good for stand-alone applications (without bus) and when no Laptop for parameterisation is in use. The configuration via LCD panel can be password-protected to prevent unintentional parameter changes.

Configuration from within the control system

Device description files allow the integration and configuration of a device in the fieldbus master. For PROFIBUS this file is called a GSD file. In case of CANopen and DeviceNet so-called EDS files are commonly used. The UMC100 can be configured using these configuration files. A considerable benefit of this method of configuration is that the configuration is stored centrally in the control system and can be downloaded again in the event of a replacement.

If the UMC100 is connected via PROFIBUS and the control system supports the FDT/DTM technology it is also possible to configure the UMC100 using the PBDTM (PROFIBUS Device Type Manager) from within the system. The PBDTM offers a very user-friendly configuration interface which also allows to adapt the internal UMC100 application logic using the custom application editor. In online mode the PBDTM additionally provides access to all diagnosis, service and process data.

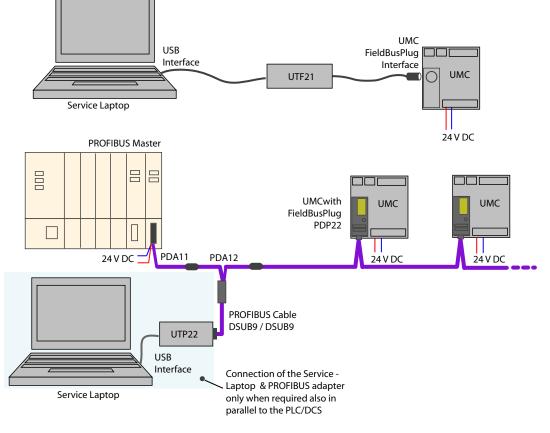
Configuration via Laptop

The configuration via laptop option is a convenient way to parameterise and monitor the UMC100. The FDT/DTM based configuration tool provides full access to all data available in the UMC100. The following functions are available:

- Online and offline configuration and parameterisation of the UMC100
- Monitoring and diagnosis of the UMC100 during operation
- Function block based programming of a user specific application
- Utilising of user roles and optional password protection for different tasks (e.g. engineering or operation)

The UTF21 communication adapter provides a point-to-point connection between a single UMC100 and your laptop. The top half of the following diagram shows this setup.

If several UMC100s are connected via PROFIBUS the UTP22 communication adapter can be used. This adapter connects your laptop to the PROFIBUS line and allows central configuration and monitoring of all UMC100s connected to this line. This is recommended for larger PROFIBUS installations.


For configuration via laptop use the ABB tool "Asset Vision Basic". It is jointly used by ABB Instrumentation and ABB Control Products. It is based on the FDT/DTM standard.

The installation and use of the PBDTM is described in the PBDTM manual. It also provides general information about the FDT/DTM technology.

Please read this manual carefully if you are unfamiliar with the FDM/DTM technology.

V6

 Connection of a service laptop using UTF21-FBP (point-to-point) or UTP22-FBP (for a whole PROFIBUS line)

Test Position

It is possible to configure a multifunction input (DI0, DI1 or DI2) to inform the UMC that the feeder is in test position. If the input signals test position the feeder's main circuit must be isolated from the motor supply but the control voltage of the UMC must be connected.

During active test position the function of the feeder and its integration into the control system can be tested. I.e. the motor can be started but the UMC does not trip because of a missing checkback.

Use the parameters Multifunction 0,1,2 to enable this function.

If the feeder is in test position the UMC has disabled the checkback supervision and other motor current related protection functions. Therefore the test position must be only active for commissioning purposes.

4 Configuring the Motor Protection Functions

In this chapter you find information on how to configure the different UMC protection functions. The following topics are covered:

Function and parameters of the electronic overload protection, the thermal memory and points to consider if the motor is started cyclically (e.g. S3 motor operation mode)

- Locked rotor protection during motor start
- Overcurrent and undercurrent protection during normal operation
- Imbalance protection

V6

- Phase loss protection
- Thermistor motor protection
- Earth fault protection with auxiliary device CEM11-FBP

Protection functions can be either on or off. If switched on, they can trigger a protection trip or a warning only (excluding the thermal overload which is always active and triggers a trip). For some functions an optional delay can be specified. Some protection functions are only active after motor start-up while others are active during motor start.

Below is an overview of the available protection functions. For details see the following sections.

Protection Function	When active	Available Options: Warning/Trip/Off	Automatic Fault Reset Possible
Electronic Overload Always		Trip	Yes
Electronic Overload Prewarning	Always	Warning	-
Locked Rotor	During motor start	Trip	-
High Current	After motor start	Separate warning and trip levels /Off. Optional delay.	-
Low Current	After motor start	Separate warning and trip levels / Off. Optional delay.	-
Imbalance	Always (Motor current > 60% of le and all three phases available)	Separate warning and trip levels / Off. Optional delay.	Yes
Phase Loss Protection	Always (Motor current > 60% of le)	Trip, Off	-
PTC Protection	Always	Trip, Warning, Off	Yes (excluding PTC wire break and short circuit)
Earth Fault Protection	Configurable	Trip, Warning, Off	-
Load Shedding / Volt- age DIP	Always	See subsection voltage DIP	-

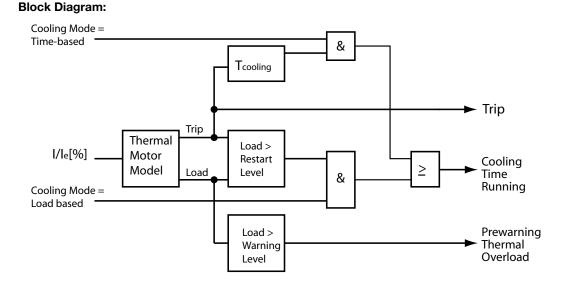
The motor start-up period ends when the motor current drops to 135% of le or if the class time (i.e. Class 5 -> 1.5 s, Class 10 -> 3 s, class 20 -> 6s, class 30 -> 9s, class 40 -> 12s) is over. The class time begins with the start command.

The motor-related and protection-related parameters shall be set according to the motor manufacturer's data sheet. Other parameters of the UMC shall be carefully selected based on the process and the system requirements.

Automatic Reset of Protection Faults

The setting of the "Fault autoreset" parameter determines how the UMC manages protection trips.

- Off (the default setting): A protection trip must be acknowledged from the user. This can be done via LCD panel, fieldbus or the multifunction inputs DI0-DI2 if configured.
- On: A protection trip is automatically acknowledged without intervention of a human operator if the trip condition has gone (e.g. cooling time over).


Electronic Overload Protection

The UMC protects three-phase AC motors in compliance with IEC 60947-4-1. The tripping class can be set to class 5, 10, 20, 30 or 40. The advanced thermal motor model considers both the copper and iron parts of the motor thus providing the best protection of the motor.

Before an electronic overload trip actually happens, a pre-warning can be generated. During high overload situations the prewarning might be raised just a few seconds before the actual trip happens.

The presently used thermal capacity (0...100%) of the motor is available to the user and thus a prediction of the time to trip for the current load situation. If the motor is switched off the time to trip shows 6553 sec (never trips). If the motor is running the predicted trip time is updated regularly. The smaller the value the earlier the trip happens.

After an overload trip, the remaining cooling down time (=time to restart) is calculated regularly and also available to the user. The motor can be restarted if the cooling time is 0 sec.

The thermal information of the motor is cyclically stored (thermal memory)¹⁾.

After a thermal overload trip the motor must cool down before it can be started again. There are two options to define the necessary duration of the cooling time.

• Fixed cooling time: The user has to specify a fixed duration e.g. 15 minutes. After a thermal overload trip a further motor start is inhibited for that time. The time that has to be adjusted depends on: Motor size, motor with or without ventilation, the environment temperature etc. Considering these points the appropriate cooling time can be estimated. Some examples of motor cooling time constants (t.c.) (motor standstill) can help:

Size	1 kW - 1 pole	5 kW -1 pole	5 kW - 2 pole	20 kW - 2	20 kW - 3	100 kW - 3
c.t.	10 min	15 min	20 min	30 min	40 min	70 min

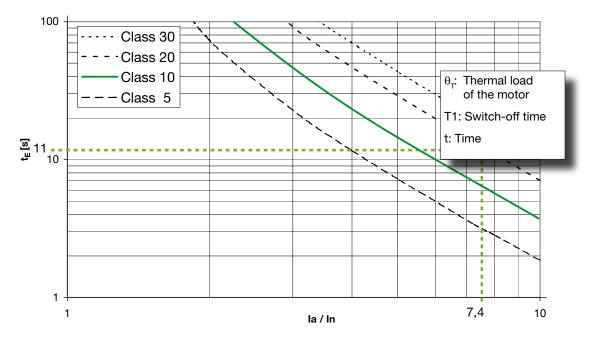
• Thermal capacity based cooling: The user specifies to which level (e.g. 60%) the thermal load level must drop before a motor start is possible again.

¹⁾ If the UMC was switched off while the cooling time was running the UMC restarts the cooling timer with the remaining cooling time if the power down time was shorter than 20min.

Example of trip class selection:

Select the trip class so that the motor is thermally protected, even when the rotor is stalled.

This means that the tripping curve of a cold motor has to be below the coordination point I_a/I_e and t_e whereas I_a is the actual current, I_e is the nominal current of the motor and t_e is the maximal heating time as defined by the motor manufacturer.


Example: Motor with enhanced safety has the data:

• Power = 7.5 kW

V 6

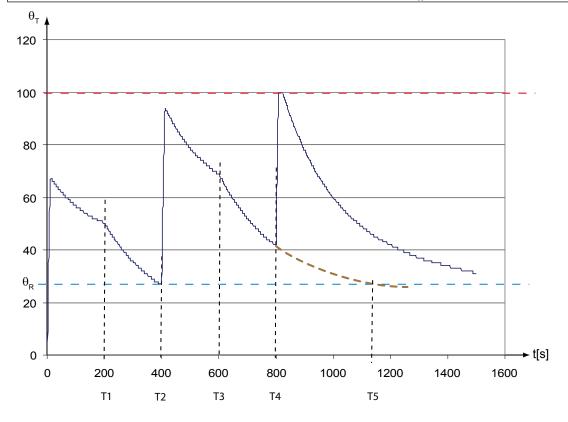
- Relation $I_a/I_e = 7.4$
- Heating time t_E = 11 s

The following diagram shows the tripping time for cold motors at 3-pole symmetric load:

The trip classes 5 and 10 are allowed because the appropriate times (3 s, 6 s) are below the time t_{E} of the motor (including the tolerance 10% of the UMC).

i

V 6


Some applications require periodic start/operation/stop cycles. Setting up such applications requires care when selecting the cooling down times or defining the shortest possible start period.

In the next diagram three successive start cycles are displayed. In each cycle the motor starts at 700% I_e . This high load lasts for about 7 seconds. Then the current goes back to I_e within 6 seconds and stays at 100% I_e for about 180 seconds. At T1 the motor is switched off and cools down for 200 seconds (cooling time is set to 200s).

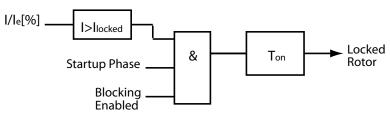
After the cooling time is over the next start takes place at T2. During this cycle the motor also cools down for 200s but the calculated thermal motor load q is already above 40%. The third start at T4 leads - as expected - to a thermal overload trip

For cyclic operation modes it is important to keep the cycles long enough to allow the motor to cool down sufficiently.

For cyclic start patterns it is better to select the cooling mode option "Restart Level" which allows a restart based on the thermal load level. In the case shown below the third start would then be allowed at the earliest at T5 for the given $\theta_{\rm R}$.

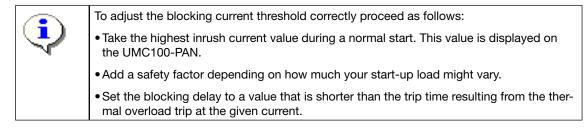
Relevant Parameters for Thermal Overload Protection

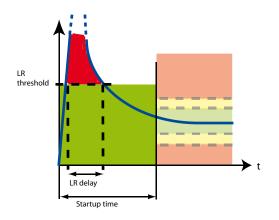
- Trip Class
- Set Current I_{e1} and optionally I_{e2}
- Current Factor
- Cooling Mode
- Cooling Time
- Restart Level
- Thermal load Pre-Warning level
- Fault autoreset



Long Start, Locked Rotor Protection

This function detects a long start situation which is caused from a locked rotor for example. The function creates a trip if the motor current continuously exceeds a threshold for a configurable period of time. Blocking of a motor can occur due to excessive loading of the motor or due to process or mechanical jam. The early detection and tripping of the motor protects the driven mechanical system by further damage and the motor from thermal stress. This function can only trigger a trip. Both the maximum allowed current and the delay time until the trip occurs can be adjusted.


Block diagram:

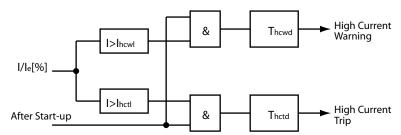

V6

Example

The diagram on the left below shows the principle operation of the function. The diagram on the right shows a concrete example. In a blocking situation which results in a given increased inrush current I, the electronic overload protection would trip the motor at T2 whereas the blocking protection already trips at T1.

Relevant Parameters:

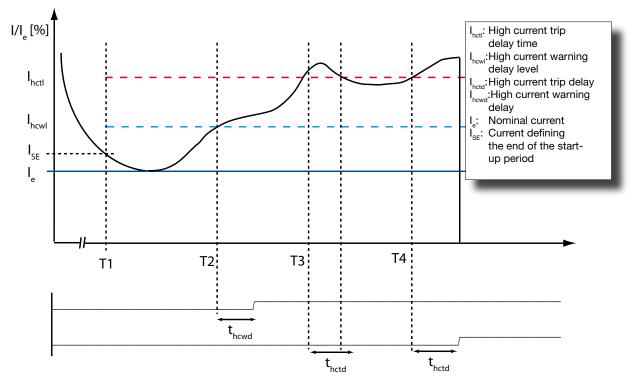
- Locked Rotor Level
- Locked Rotor Delay



High Current Protection

This function is useful to protect the driven mechanical system from jams and excessive overloads caused by the equipment or the process.

The high-current function signals a warning when the motor current exceeds a set threshold for a configurable period of time, after the motor start-up. The high current function creates a trip when the current continuously exceeds a separately set threshold for a set period of time, after the motor start-up.


Block Diagram:

Example:

The start-up phase ended at T1. At T2 the current increases above the high current warning level I_{howl} for a period longer than the high current warning delay time t_{howd} . Therefore the high current warning signal is set.

At T3 the current also increases above the high current trip level I_{hctl} but only for a period shorter than the specified high current trip delay time t_{hctd} . Then at T4 the current rises again above the trip level and stays there long enough to trigger an overcurrent trip that finally stops the motor.

Relevant Parameters:	
High Current Trip Level	High Current Warning Level
High Current Trip Delay	High Current Warning Delay

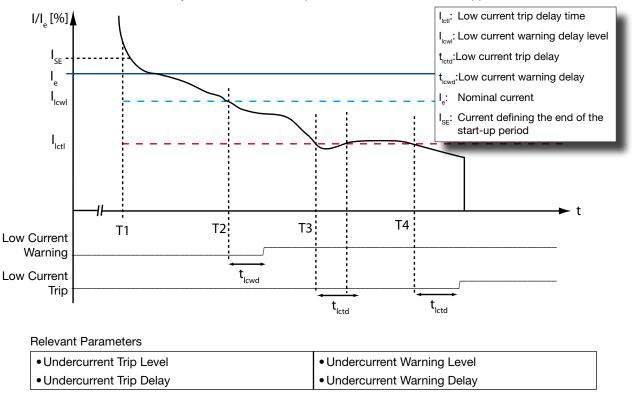
Low Current Protection


V6

The low current function is triggered when the motor current falls below a desired level. The function detects loss of suction for pumps, broken belt for conveyors, loss of airflow for fans, broken tools for machines etc. Such states do not harm the motor but early diagnosis helps to minimise the extent of damage to the mechanical installation and subsequent loss of production

The motors on underload draw mainly the magnetising current and a small load current to overcome frictional losses. Therefore, the other reason to isolate the motors on underload is to reduce the reactive load on the power system network.

The low current function signals a warning when the motor current falls below the warning level for a configurable period of time, after motor start-up. The low current function creates a trip when the motor current falls below the trip level for a configurable period of time, after motor startup.


Block Diagram:

Example:

The diagram above shows an underload situation of the motor after the startup time is over (T1). At T2 the motor current falls below the undercurrent warning limit I_{ucwl} . After the undercurrent warning delay time t_{ucwd} an undercurrent warning is set.

Then at T3 the current also falls under the undercurrent trip level I_{ucti} but only for a period shorter than the specified undercurrent trip delay time t_{uctd} . Therefore no trip happens. At T4 the current falls again under the low current level and stays there. Therefore a trip is released and the motor stopped.

Phase Loss Protection

This function protects motors against the extreme situation where a complete phase is lost. An undetected phase loss can cause motor damage because of the sudden rise of current in the two remaining phases. Thus the thermal overload protection performs an accelerated trip during phase loss.

The phase loss protection function must not be disabled in real applications. The phase loss protection may only be disabled for demo purposes.

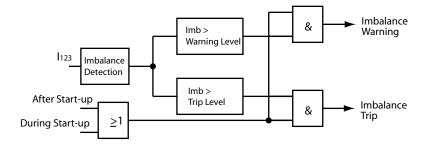
The following table shows the tripping times in case of phase loss for the different trip classes.

Trip class	5	10	20	30	40
Tripping time [s]	1.5	3	6	9	12

Relevant Parameters:

Phase Loss Protection

Phase Imbalance Protection


Imbalance protection function protects the motor against a small degree of imbalance in the motor phases.

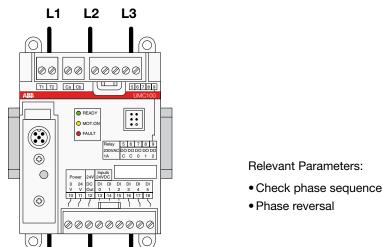
Function:

The current phase imbalance function signals a warning when the current in a phase differs more than the configured warning level from the average current in all 3 phases. A fix hysteresis is built in.

The current phase imbalance protection signals a fault when the current in a phase differs more than the configured trip level from the average current in all 3 phases for a period of time. This time is trip class dependent and shown in the table above.

Block Diagram:

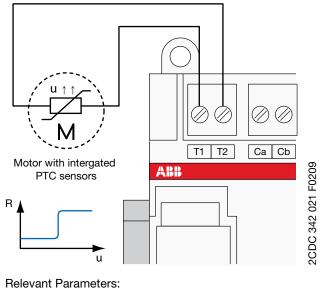
Relevant Parameters:


- Phase Imbalance Warning Level
- Phase Imbalance Trip Level

Phase Sequence Protection

V6

Enable this protection function to prevent connected equipment from a wrong rotation direction e.g when driving a crusher or conveyor. If this protection function is active the motor wires must have a defined order which is from left to right. It is possible to change the expected direction if wiring was done in a different way. Take care that contactors are mounted after the UMC to ensure the phase sequence is not changed by switching the contactors (e.g. REV starter).



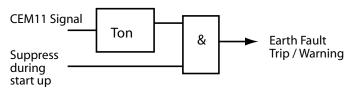
Motor Protection with Thermistor (PTC) acc. to EN 60947-8 (type A sensors)

PTC thermistors are semiconductor elements with a very high positive temperature coefficient. They are embedded directly in the phase windings of the stator. In contrast to the thermal overload protection that responds to the load current, the thermistor protection responds to the change in thermistor resistance due to temperature change in the motor windings.

The thermistors are selected to have a rated operating temperature that corresponds to the insulation class, type and construction of the motor. At the rated temperature the thermistor resistance increases sharply up to the hot temperature resistance value.

The UMC senses this abrupt change in the resistance. When thermistor protection is activated there is also an internal supervision which detects open or short-circuit faults from the thermistor circuit.

• PTC


Earth Fault Protection with CEM11

The earth fault protection function protects the motor and the network against ground current flow. During an earth fault, the motors can reach a dangerous potential above the ground level thus posing a safety hazard to personnel. The earth faults are mainly caused due to ageing of the insulation, deterioration of insulation due to sustained or cyclic overloading, moisture or conductive dust. The monitoring of the earth fault is carried out with the help of the auxiliary device CEM11. The CEM11 device monitors if the sum of the three phase currents is zero.

Detection of such ground faults can be used to interrupt the motor to prevent further damage, or to alert the maintenance personnel to perform timely maintenance.

The CEM11 can be connected to one of the multifunction inputs of the UMC. The earth fault signal can be optionally delayed. It is also possible to suppress the earth fault during the motor start-up phase.

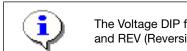
Block Diagram:

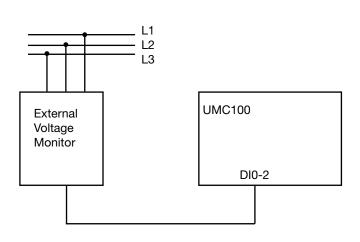
Sample Circuit Diagram:

To use CEM11 with the UMC proceed as follows:

- 1. Select the CEM11 model that suits your application needs. There are four different models available with feed-through holes from 35mm to 120mm.
- 2. Connect the CEM11 to one of the multifunction inputs DO0, DI1 or DI2 and 24V DC supply.
- 3. Configure the corresponding multifuncion input as earth fault input. You can select if the earth fault supervision shall be suppressed during motor start or not.
- 4. Optionally a time can be configured to delay the creation of a fault or warning. It is adjustable from 0.1 to 25.5 s.
- 5. Configure the threshold when an earth fault should be signalled. The threshold can be set directly at the earth fault monitor (CEM11) itself. See the CEM11 technical manual for further details.

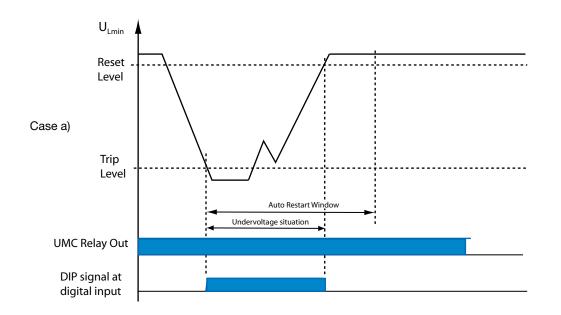
Relevant Parameters:

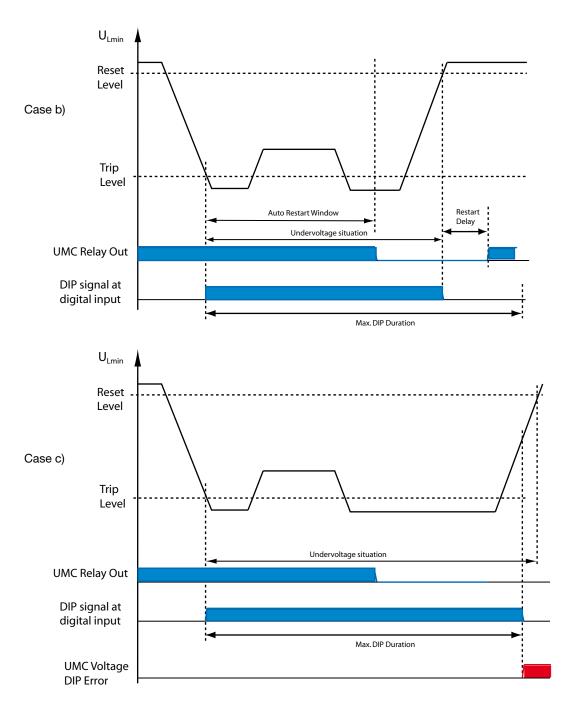



V 6 Technical Description

Voltage Dips, Load Shedding

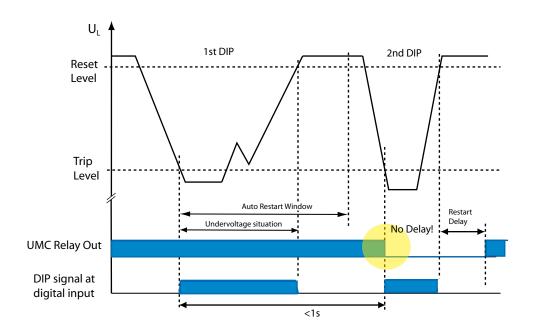
Motors switched off during voltage dips or power failure can be restarted on power resumption sequentially to prevent simultaneous switch-on of the motors and thus prevent another mains failure on the network. The tripping of motors due to undervoltage of short duration can be bypassed. It is also possible to restart the process on power resumption by sequentially starting the motors (staggered start).


The Voltage DIP function is available for the starter types DOL (Direct Online Starter) and REV (Reversing Starter).


The following diagram shows different cases. In case a) where the voltage dip is shorter than the *Auto Restart Time* the UMC output relay does not open. The motor keeps running.

In case b) the voltage dip takes longer than the configured *Auto Restart Time* which means the UMC switches off the relay output. The dip is shorter than configured with parameter '*Max. Voltage Dip Duration*' so the motor gets started automatically after an optional restart delay time (Parameter 'Dip Autorestart Enable=On).

In case c) the voltage dip takes longer than the *Max. Voltage Dip Duration* time. Therefore an error is generated as soon as the dip duration exceeds the allowed dip duration time.



Double DIPs

V6

Special handling can be activated if two dips occur within one second. Set parameter '*Enable Voltage Dip*' to "On + Rapid Cycle Lockout". If within one second two separate dips occur, immediately after the start of the second dip the contactors are switched off.

They are automatically switched on again after the 'Restart Delay' time if parameter '*AutoRestartAfterDip*' is enabled.

Relevant Parameters:

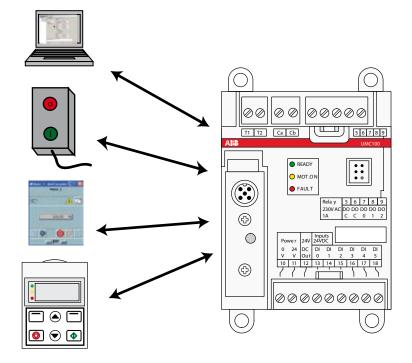
- Dip Enable
- Dip Duration
- Dip Autorestart Window
- Dip Duration
- Dip Autorestart Enable

V 6 Technical Description

5 Configuring the Motor Management Functions

In this section you find the following information:

- Introduction into the supported control stations and operation modes
- How to start and stop the motor from the different control stations
- Available control functions
- Functions related to motor control such as emergency start, checkback monitoring etc.


Starting and Stopping the Motor

Control Stations

From control stations (i.e. source of commands) start/stop commands can be sent to the UMC. Four control stations are supported:

- Digital Inputs: Allow the motor to be controlled from a control panel with push buttons e.g. mounted locally to the motor.
- DCS/PLC: Commands are transferred via cyclic communication telegrams from the process controller via fieldbus to the UMC. The UMC uses the PNO motor starter profile which defines the meaning of each bit in the cyclic telegrams. See section XXX for further details.
- LCD-Panel: Allows control via the buttons of the UMC-PAN usually mounted in the switchgear cabinet door
- Service Tool: Allows control commands to be issued via acyclic communication services of the used fieldbus. The UMC DTM uses this communication channel for example.

For each control station you can configure if a start and/or a stop command is accepted by the UMC.

Modes

In practise it is often required to release or block start/stop commands from a control station depending on various reasons e.g.

- If the communication to the bus master is interrupted you want to automatically enable control via digital inputs which would not be possible if the communication is ok
- For service purposes all commands from the bus should be ignored
- •...

Therefore the UMC enables start/stop commands to be individually released or blocked from a control station depending on modes. Three different modes are available named by their typical usage:

Mode	Default Behaviour
Auto (Remote)	In this operation mode the UMC accepts start commands from the DCS/PLC. To activate this control mode the "Auto Mode Bit" in the cyclic communication tele- gram must be set to logic one. No start commands from other control sources are accepted in this mode.
Local 1	In this mode the motor is controlled locally at the motor or the motor control room. Start commands are accepted from the digital inputs or the LCD control panel. This mode is active in the following cases:
	 If the "Auto Mode Bit" in the cyclic bus telegram is not set i.e. the PLC/DCS has enabled local control.
	 If the LCD panel is used to control the motor locally. As soon as the menu point "Motor Control" is entered and the UMC signals local control
	If the UMC detects a bus fault
Local 2	Is a second local control mode that can be activated via one of the multifunction in- puts even if another mode is active. This allows local control to be enforced via digi- tal inputs without involvement of the PLC/DCS (i.e. the "Auto Mode Bit" is ignored).

How to set the mode:

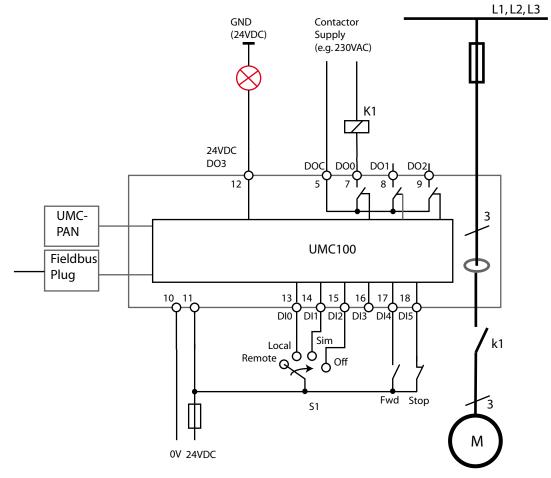
There are three relevant signals that determine which mode is active:

- Bus fault: The UMC has detected a bus fault (i.e. the cyclic bus master is missing)
- Force Local 2: A multifunction input signals that the local 2 mode shall be activated
- Autobit: With bit 5 in byte 0 of the cyclic command telegram, the PLC/DCS signals that the auto mode shall be activated and control shall happen via bus (according to PNO motor management profile).

The following table shows the activated operation mode depending on these inputs. There is always one mode selected even if more than one input is active. The bus fault signal has the highest priority followed by the force local 2 signal. The autobit has lowest priority.

Bus fault (e.g. no sign of life from master)	1	0	0	0
Force local 2 signal (from DI0-2)	х	0	1	0
Autobit is set to true on FieldbusBus	x	0	x	1
Resulting Mode	Local 1	Local 1	Local 2	Auto
x: Either 0 or 1				

▲ Mode selection table. Based on the three inputs the active mode is selected.


Example:

V6

The following requirements shall be fulfilled:

- Switch S1 has the following positions: Remote/Local/Test Position/Off.
- (Req. 1) If the switch is in position *Local* the UMC can only be controlled locally (digital inputs and LCD) but not started via bus. But it shall be possible to stop the motor also via bus.
- (Req. 2) In position Auto the DCS can control the UMC. Locally only a stop command can be issued.
- (Req. 3) In position Off the motor cannot be started at all
- (Req. 4) Position Test is for commissioning purposes and switches the UMC in simulation mode.
- (Req. 5) If there is a bus fault the UMC shall automatically go into local mode and allows starting/stopping via the LCD panel and the digital inputs (as in position *Local*).

The diagram below shows the simplified circuit diagram:

From the requirements you can see that the three control places Digital Inputs, Fieldbus and LCD are used. Furthermore start/stop commands from the different control places shall be blocked or released depending on the Fieldbus and S1 status. Therefore the different modes can be used.

To read in the S1 commands the three multifunction inputs DI0, DI1 and DI2 are used. Their configuration is as follows:

- Multifunction In 0 = Force Local (NO): This input activates local 2 mode if the user wants to ensure that the DCS cannot control the motor (Req 1)
- Multifunction In 1 = Test Position (NO): This input activates simulation (Req. 4)
- Multifunction In 2 = Stop: Stop (NO) is dominant and no start is permitted if the input is active (Req. 3) For the Remote position no input is needed, because if the UMC is not in local mode, it is automatically in Auto mode

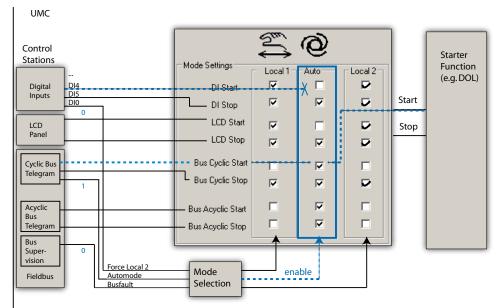
Finally it is necessary to configure from which control places the motor can be started in the different

operation modes (Auto / Local).

The following parameters are set according to the requirements (Req 1, Req2, Req 5):

Settings for local mode 1 (For busfault situation)

Loc 1 Start Bus Cyc = YES (Reg. 1) Loc 1 Stop Bus Cyc = NOLoc 1 Start DI = YES (Reg 5) Loc 1 Stop DI = YES (Reg 5) Loc 1 Start LCD = YES (Req 5) Loc 1 Stop LCD = YES (Reg 5) Loc 1 Start Bus Acyc = NO Loc 1 Stop Bus Acyc = NO


Settings for Auto/Remote mode (S1 in position Remote)

Auto Start Bus Cyc	= YES (Req 2)
Auto Stop Bus Cyc	= YES (Req 2)
Auto Start DI	= NO
Auto Stop DI	= YES (Req 2)
Auto Start LCD	= NO
Auto Stop LCD	= YES
Auto Start Bus Acyc	= YES
Auto Stop Bus Acyc	= YES

Settings for local mode 2 (Switch S1 in position Local)

Loc 2 Start Bus Cyc	= NO
Loc 2 Stop Bus Cyc	= YES (Req. 1)
Loc 2 Start DI	= YES (Req. 1)
Loc 2 Stop DI	= YES (Req. 1)
Loc 2 Start LCD	= YES (Req. 1)
Loc 2 Stop LCD	= YES (Req. 1)
Loc 2 Start Bus Acyc	= NO
Loc 2 Stop Bus Acyc	= NO

The following diagram shows the simplified UMC internal data flow if S1 is in position *Remote* as shown in the circuit diagram before. On the left side there are the four blocks representing the control stations. Only three of them were required in the example. In the middle the so-called command control selection block is displayed. On the right the starter function block is displayed. The configuration is as above. A cross represents a YES, an empty field a NO. The active mode is REMOTE/AUTO as defined by S1. Therefore the DCS can start the motor. Other start commands (as indicated by DI4) will be blocked.

V 6 Technical Description

Activating Inching Mode

By default "pulses" are used to issue a start command. This means that a start input has to change its logic level to issue a start command - i.e. it is edge triggered. After the start command was accepted from the UMC the input signal can be set back to its initial value (e.g. zero).

For a start signal sent from the digital inputs (DI4/DI5) it is possible to change the behaviour from pulse mode to inching mode. This means that the motor is only running while the start signal is present. If it is not present anymore the motor stops automatically.

Relevant Parameters:

- For each of the three modes Local Control 1 (Loc1), Local Control 2 (Loc2) and Auto (Auto) the following parameters are available
 - Start bus cyclic
 - Stop bus cyclic
 - Start LCD
 - Stop LCD
 - Start bus acyclic
 - Stop bus acyclic
 - Start DI
 - Stop DI
- Jog via DI (inching mode)
- Invert start DI
- Invert stop DI

Emergency Start

In some special cases a motor must be started even if the thermal overload protection would prevent the start (i.e. cooling time is still running). To allow the start in such situations the thermal memory of the UMC can be reset to cold state. This enables an immediate restart even after a thermal overload trip.

There are two possibilities for an emergency start:

Using the multifunction inputs DI0, DI1 or DI2 an emergency start is carried out as follows:

- 1. Parameterise DI0, DI1 or DI2 as emergency start input
- 2. Switch the signal on the parameterised input to 1:
 - 0 -> 1 transition to reset the UMC100 thermal memory to "cold motor"
 - Continuous 1-signal to ignore fault signals on multi-function inputs (if parameterised as fault inputs)
 - Switch on motor

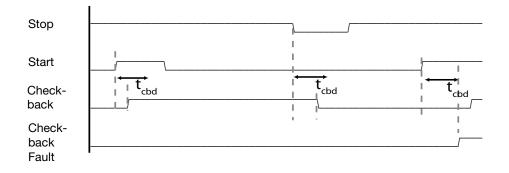
To perform an emergency start from the control system / fieldbus, the following steps must be carried out:

- 1. Set Parameter Emergency = On (default is Off)
- Send command PREPARE EMERGENCY START 0->1 transition via fieldbus to reset the UMC100 thermal memory to "cold motor". A continuous 1-signal ignores fault signals originating from the multifunction inputs (if parametrized as fault inputs)
- 3. Switch on motor

Caution: Starting a hot motor can cause motor damage or destruction of the motor.

Relevant Parameters:

- Emergency Start
- Multifunction 0,1,2


Checkback Monitoring

V 6

The UMC can be parameterised to monitor that the motor was really started using a checkback signal. By default the actual motor current is monitored. But it is also possible to use an auxiliary contact mounted on the main contactor.

If checkback monitoring via motor current is active it is checked that the measured current rose above 20 % within the Checkback Delay Time (t_{cbd}) after switching on the main contactor. Otherwise when the motor is switched off the function checks that the motor current is zero at the latest after the Checkback Delay Time.

For checkback via contactors one or more auxiliary contacts must be installed and wired to the UMC's digital input DI0. The number of monitored signals depends on the selected control functions which are described in the following sections.

Related Parameters

- Checkback Time
- Checkback Mode

Using the Digital UMC Inputs

The UMC inputs DI0 ... DI5 are digital inputs according to IEC61131. They can be used to connect status and control signals to the UMC. UMC's reaction to these signals can be adapted in a wide range to cover typical user needs (e.g. starting the motor). The status of each digital input is available in the monitoring telegram sent to the PLC/DCS.

Using the Inputs DI3-DI5

The inputs DI3 to DI5 can be used for local motor control. DI5 is always the stop input whereas DI4 starts the motor in a forward direction and DI3 in a reverse direction (if supported by the active control function). If inching mode is enabled the stop can still be used.

Using the Multifunction Inputs DI0-DI2

The digital inputs DI0, DI1 and DI2 are called multifunction inputs because their function can be adapted flexibly depending to your application requirements. The following diagram shows the way the multifunction inputs work.

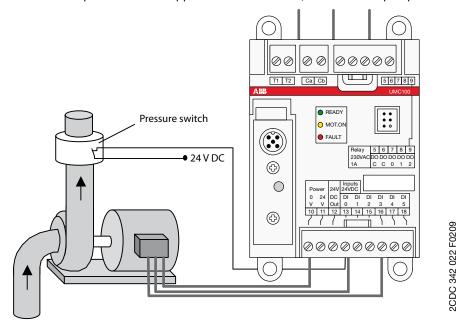
The three multifunction inputs operate fully independent - i.e. for each input an own delay time and function can be selected. Functions like 'test position', 'stop motor' etc. internally pass an OR gate so the UMC does not differentiate from which digital input the signal came.

If an input is configured as fault input the behaviour is different. For each input its own internal error signal is available and a fault text can be specified which is displayed on the LCD panel in the event of this error. You can thus find out what input actually triggered the fault. Faults can be auto acknowledged when the fault has been rectified.

*) **Test Postion** ≥1 DIO 1 On Delay Ton >1 Motor Stop Delayed ≥1 External Fault 0 Input 0 Status External Fault Settings: Delay Time Function: Г External Fault • Autoreset Fault Text (1-8) Tank Fault Text (9-16) Full 1 On Delay DI1 Ton External Fault 1 Input 1 Status Delay Time Function: External Fault Settings: External Fault • Autoreset Fault Text (1-8) Fault Text (9-16) On Delay DI2 Ton External Fault 2 Input 2 Status Delay Time Function: External Fault Settings External Fault • Autoreset Г Fault Text (1-8) Fault Text (9-16)

The unchanged signal from the DI is always available for monitoring purposes (Input 1/2/3 status).

*) If a digital input is already used for the starter function (e.g. for torque inputs in the actuator modes or for contactor checkback) they are not available anymore as multifunction inputs.


V6

V6

Sample Application for using the Multifunction Inputs

The following diagram shows how to realise a dry-pump protection application. When the motor is starting there is no pressure. It takes some time until the pressure reaches its normal value. In this example we assume that the pressure has to appear within 4 seconds, otherwise the pump can be destroyed.

To realize this function the multifunction input can be parameterised in the following way:

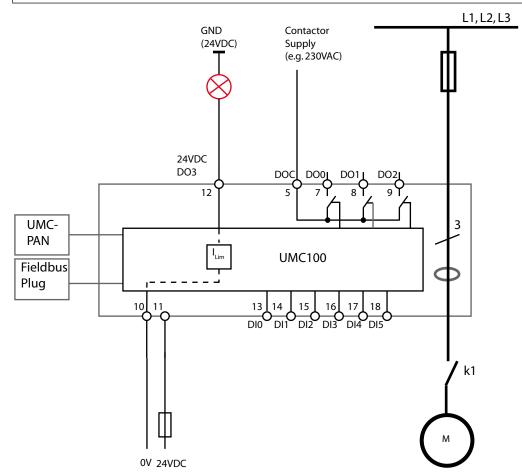
- Set the delay time to 4s
- Set the function to "Fault when motor is running"
- Define a meaningful message e.g. "Dry run"

If the pressure switch does not monitor "pressure present" within 4s (or when the pressure signal disappears for more than 4s during operation) the internal fault signal is set and the motor is stopped. The error message "Dry run" appears as a fault message.

A second example on how to use the multifunction inputs is shown in section "Starting and Stopping the Motor".

Control Function Transparent

The UMC100 parametrised with the control function 'Transparent' behaves like an I/O module with an integrated overload check. The outputs DO0 ... DO3 and the inputs DI0 ... DI5 are directly connected to the fieldbus and are independent of the overload status.


If a fault output (DO2 or DO3) is activated by configuration the relevant output cannot be controlled from the fieldbus anymore but is controlled by the UMC itself.

The contactor k1 can be switched on and off for example using a standard maintaining circuit (not shown).

Alternatively it can be switched on and off from the control system which uses one of the UMC relay outputs to control the motor. This option enables specific control logic to be implemented in the PLC.

The following features are not supported in this control function:

- Checkback supervision
- UMC controlled starting and stopping (bus, LCD, DI)
- · Simulation and stop via multifunction inputs
- Bus fault reaction
- Voltage dip

Circuit diagram of the UMC in transparent mode.

V 6 Technical Description

Monitoring Data for Transparent

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	Summary Warning	Summary Fault	-	-	Overload warning	-	-	-
	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-
1	2, 3			Mot	or Current in 9	% of I _e (0% -	800%)		
2	4, 5			Analogu	ue Word (Ther	mal Load: 0	% - 100%)		
3	6, 7		Analogue Word (Time to trip in seconds)						
4	8, 9			Analog	ue Word (Time	e to restart ir	n seconds)		
5	10.11				Analog	ue Word			
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0
	13	-	-	-	-	-	-	-	-
7	14	-	-	-	-	-	-	-	-
1	15	-	-	-	-	-	-	-	-

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

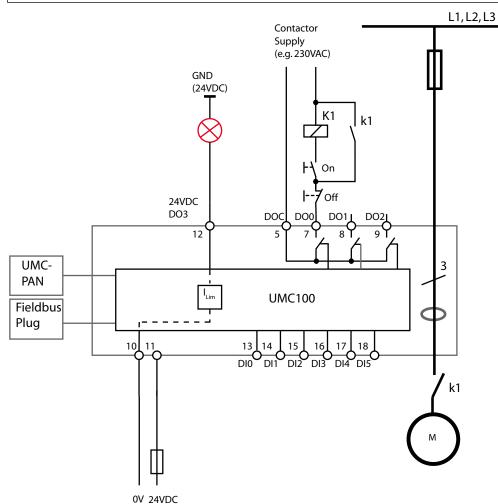
Command Data for Transparent

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0	
0	0	-	Fault Reset	-	Prepare Emergency Start	-	-	-	-	
0	1	UMC100 DO2 ¹⁾	UMC100 DO1	UMC100 DO0	UMC100 24VDC Out ¹⁾	-	-	-	-	
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0	
	3	-	-	-	-	-	-	-	-	
2	4, 5		Analogue Word							
3	6, 7		Analogue Word							

¹⁾ Controlled by UMC100 if configured as fault output.

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Control Function Overload Relay


The UMC100 parameterised with the control function 'Overload relay' can be used to replace a standard overload relay.

The outputs DO2 ... DO3 and the inputs DI0 ... DI5 are directly connected to the fieldbus and not used from the control function.

If a fault output is activated the fault output (DO2 or 24 V DC Out DO3) cannot be controlled from the fieldbus anymore but is controlled by the UMC itself.

After powering up, contact DO0 immediately closes and contact DO1 opens.

The following features are not supported in this control function: • Checkback supervision • UMC controlled starting and stopping (bus, LCD, DI) • Simulation and stop via multifunction inputs • Bus fault reaction • Voltage dip

Circuit diagram of the UMC overload relay mode.

Fault Behaviour:

- Contact DO0 opens
- Contact DO1 closes
- The fault output DO2/DO3 is activated if configured
- The monitoring signal FAULT is sent to the fieldbus
- The red LED on the UMC is switched on
- The FAULT signal on the control panel flashes.

iechnical Description

V6

Monitoring Data for Overload Relay

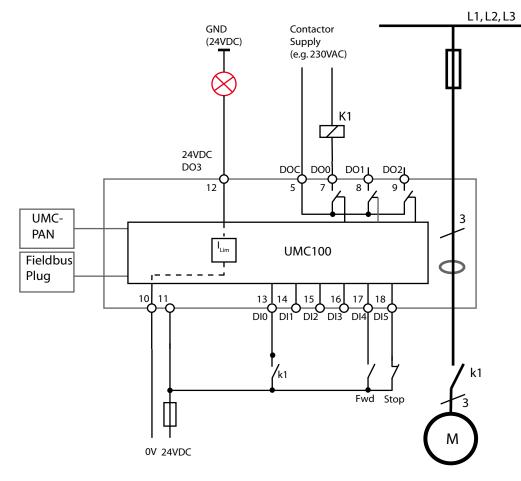
Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	Summary Warning	Summary Fault	-	-	Overload warning	-	-	-
Ū	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-
1	2, 3			Mot	or Current in %	% of I _e (0% -	800%)		
2	4, 5			Analogu	ue Word (Theri	mal Load: 09	% - 100%)		
3	6, 7		Analogue Word (Time to trip in seconds)						
4	8, 9		Analogue Word (Time to restart in seconds)						
5	10.11				Analog	ue Word			
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0
	13	-	-	-	-	-	-	-	-
7	14	-	-	-	-	-	-	-	-
1	15	-	-	-	-	-	-	-	-

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data Overload Relay

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0	
0	0	-	Fault Reset	-	Prepare Emergency Start	-	-	-	-	
0	1	UMC100 DO2 ¹⁾	-	-	UMC100 24VDC Out ¹⁾	-	-	-	-	
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0	
	3	-	-	-	-	-	-	-	-	
2	4, 5		Analogue Word							
3	6, 7		Analogue Word							

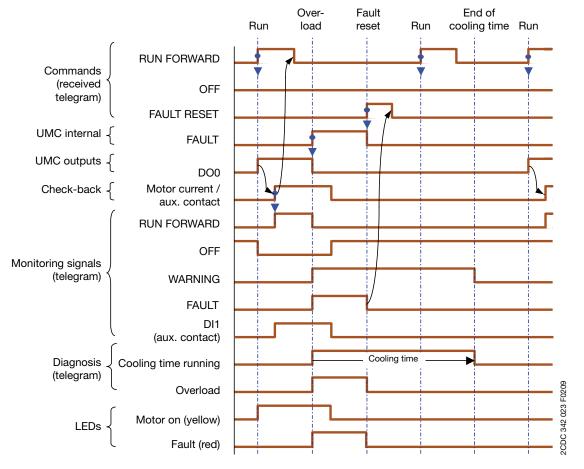
¹⁾ Controlled by UMC100 if configured as fault output.


The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Use this function in a feeder that requires a motor to start/stop in one direction of rotation.

- Relay output DO0 is used from the control function.
- Optionally DI0 can be used for contactor checkback supervision
- Optionally DI4/DI5 can be used to start/stop the motor locally
- Optionally terminals named 24VDC Out (12) or DO2 can be used as fault output

The following diagram shows the UMC wired for DOL operation. A signal lamp is connected to DO3 which serves as a fault output. The main contactor is connected to DO0. An auxiliary contact of K is used by contactor checkback monitoring. The motor can be started locally via DI4 and stopped via DI5. The remaining digital inputs can be freely used.


Circuit diagram of the UMC to control a motor in one direction of rotation. The checkback contact k1 is optional.

V6

Timing Diagram for Direct Starter

V 6

Monitoring Data for Direct Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	Summary Warning	Summary Fault	Local Control	-	Overload warning	Run For- ward	Off	-
Ū	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-
1	2, 3			Mot	or Current in %	% of I _e (0% -	800%)		
2	4, 5			Analogu	ue Word (Theri	mal Load: 09	% - 100%)		
3	6, 7		Analogue Word (Time to trip in seconds)						
4	8, 9		Analogue Word (Time to restart in seconds)						
5	10.11				Analog	ue Word			
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0
	13	-	-	-	-	-	-	-	-
7	14	-	-	-	-	-	-	-	-
1	15	-	-	-	-	-	-	-	-

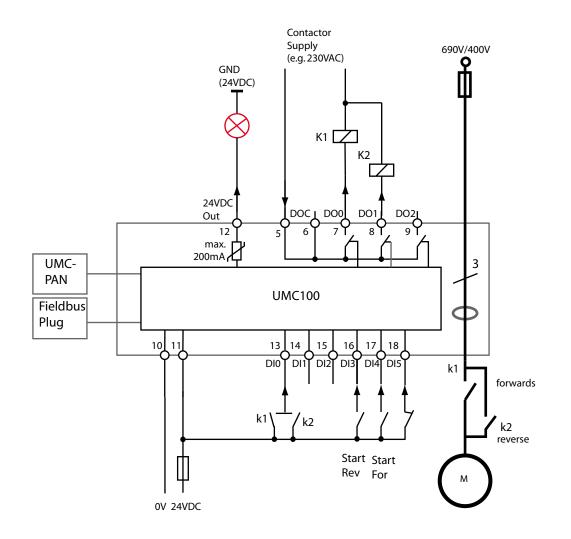
The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data for Direct Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0	
0	0	-	Fault Reset	Auto Mode	Prepare Emergency Start	-	Run Forward	Off	-	
	1	UMC100 DO2 ¹⁾	UMC100 DO1	-	UMC100 24VDC Out ¹⁾	-	-	-	-	
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0	
	3	-	-	-	-	-	-	-	-	
2	4, 5		Analogue Word							
3	6, 7		Analogue Word							

¹⁾ Controlled by the UMC100 if configured as fault output

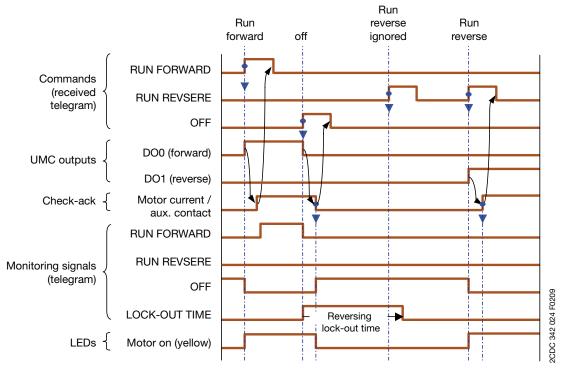
The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!


V 6 Technical Description

Control Function Reversing Starter (REV)

Use this function in a feeder that requires a motor to start/stop in two direction of rotation (forwards/back-wards).

- Relay output DO0 is used by the control function to start the motor in a forward direction.
- Relay output DO1 is used from the control function to start the motor in a reverse direction.
- Optionally DI0 can be used for contactor checkback supervision
- Optionally DI3 / DI4 can be used to start the motor and DI5 to stop the motor
- Optionally terminals named 24VDC Out (12) or DO2 can be used as a fault output


The following diagram shows the UMC wired for REV operation. A signal lamp is connected to DO3 which serves as a fault output. The main contactor is connected to DO0 and DO1. Two auxiliary contacts k1 and k2 are used for contactor checkback monitoring. The motor can be started locally via DI3/DI4 and stopped via DI5. The remaining digital inputs can be freely used.

Circuit diagram of the UMC for controlling a motor in two directions of rotation. The checkback contacts k1/k2 are optional.

Timing Diagram for Changing Direction

Remark:

- Opposite direction only possible after OFF and after the reverse lock-out time has elapsed.
- Restart in the same direction without consideration of the Reverse lock-out time.

Related parameters

- Reverse Lockout Time

V6

Monitoring Data for Reversing Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0		
0	0	Summary Warning	Summary Fault	Local Control	Reverse Lockout Time	Overload warning	Run Forward	Off	Run Reverse		
	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-		
1	2, 3		Motor Current in % of I _e (0% - 800%)								
2	4, 5		Analogue Word (Thermal Load: 0% - 100%)								
3	6, 7	Analogue Word (Time to trip in seconds)									
4	8, 9	Analogue Word (Time to restart in seconds)									
5	10.11				Analog	ue Word					
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0		
	13	-	-	-	-	-	-	-	-		
7	14	-	-	-	-	-	-	-	-		
/	15	-	-	-	-	-	-	-	-		

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

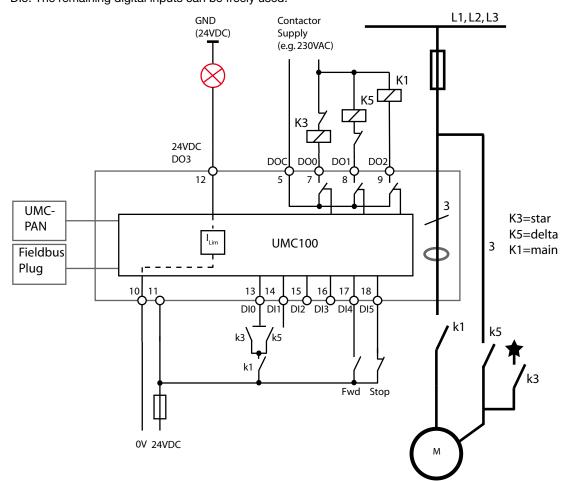
Command Data for Reversing Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0		
0	0	-	Fault Reset	Auto Mode	Prepare Emergency Start	-	Run Forward	Off	Run Reverse		
	1	UMC100 DO2 ¹⁾	-	-	UMC100 24VDC Out ¹⁾	-	-	-	-		
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0		
	3	-	-	-	-	-	-	-	-		
2	4, 5	Analogue Word									
3	6, 7	Analogue Word									

¹⁾ Controlled by the UMC100 if configured as fault output.

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

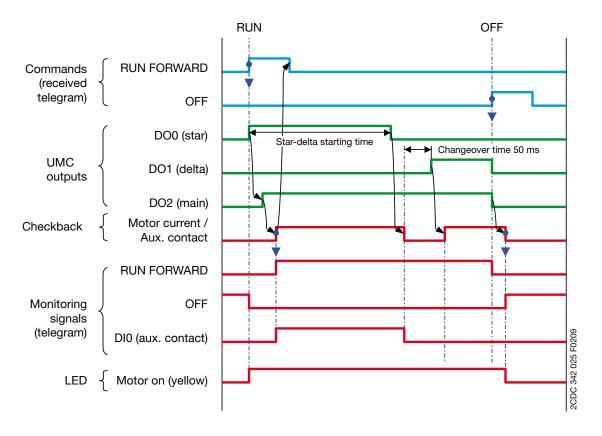
Control Function Star-Delta Starter


Use this function in a feeder that requires to start/stop a motor in one direction of rotation including the time- or current-controlled transition from star to delta.

- Relay output DO0 is used by the control function to control the star contactor
- Relay output DO1 is used by the control function to control the delta contactor
- Relay output DO2 is used by the control function to control the main contactor. It cannot be used as fault output. Use the 24VDC output DO3 if a fault output is required.
- Optionally DI0 can be used for contactor checkback supervision
- Optionally DI4 can be used to start the motor and DI5 to stop it
- Optionally terminal named 24VDC Out (12) can be used as a fault output

The voltage dip function is not supported in this control function. Adjust parameter YD changeover mode Adjust parameter YD starting time

The following diagram shows the UMC wired for star-delta operation. A signal lamp is connected to DO3 which serves as a fault output. The main contactor is connected to DO0 to DO2. Three auxiliary contacts are used for contactor checkback monitoring. The motor can be started locally via DI4 and stopped via DI5. The remaining digital inputs can be freely used.


Circuit diagram of the UMC for controlling a motor in star-delta mode. The checkback contacts k3/K5 and K1 are optional.

V6

V 6

Timing Diagram for Star-Delta Starter

Monitoring Data for Star-Delta Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0			
0	0	Summary Warning	Summary Fault	Local Control	-	Overload warning	Run Forward	Off	-			
Ū	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-			
1	2, 3		Motor Current in % of I _e (0% - 800%)									
2	4, 5		Analogue Word (Thermal Load: 0% - 100%)									
3	6, 7		Analogue Word (Time to trip in seconds)									
4	8, 9	Analogue Word (Time to restart in seconds)										
5	10.11				Analog	ue Word						
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0			
	13	-	-	-	-	-	-	-	-			
7	14	-	-	-	-	-	-	-	-			
1	15	-	-	-	-	-	-	-	-			

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data for Star-Delta Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0		
0	0	-	Fault Reset	Auto Mode	Prepare Emergency Start	-	Run Forward	Off	-		
0	1	-	-	-	UMC100 24VDC Out ¹⁾	-	-	-	-		
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0		
	3	-	-	-	-	-	-	-	-		
2	4, 5		Analogue Word								
3	6, 7	Analogue Word									

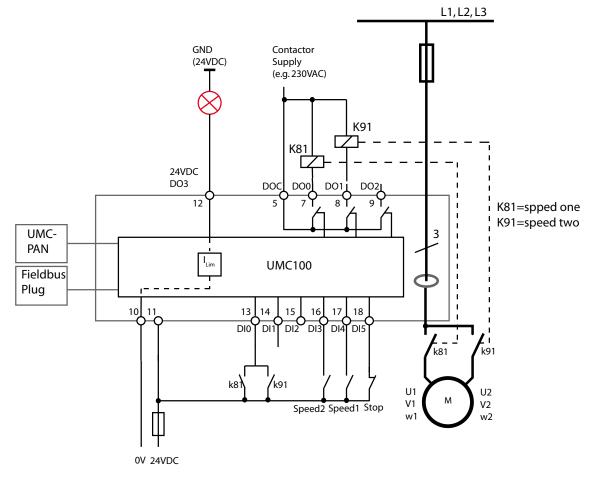
¹⁾ Controlled by the UMC100 if configured as fault output.

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

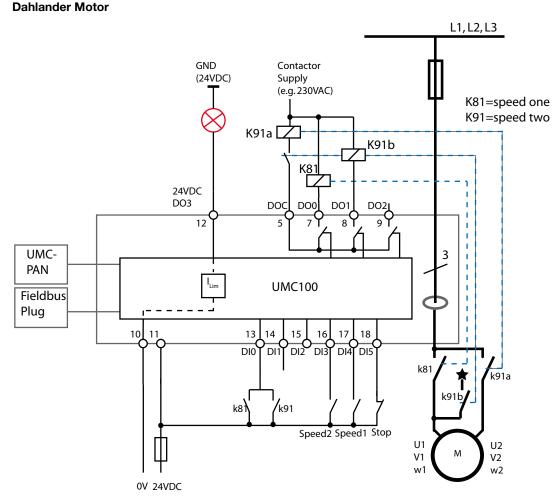
V 6 Technical Description

Control Function Pole-Changing Starter

Use this function in a feeder that requires a two-pole or dahlander motor to start-stop in one direction of rotation.

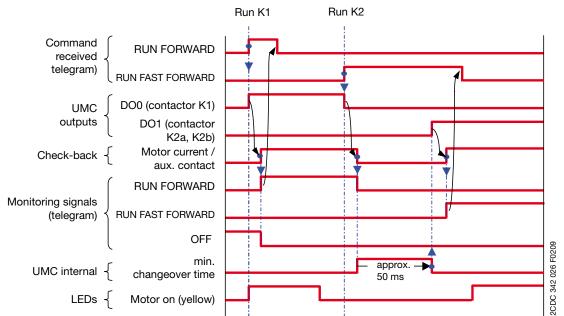

- Relay output DO0 is used by the control function to start the motor at speed one
- Relay output DO1 is used by the control function to start the motor at speed two
- Optionally DI0 can be used for contactor checkback supervision
- Optionally DI4/D3 can be used to start the motor at speed one/two and DI5 to stop it
- Optionally terminals named 24VDC Out (12) or DO2 (9) can be used as a fault output

The voltage dip function is not supported in this control function Set I_{a2} according to the motor nameplate


The following diagram shows the UMC wired for two-pole operation. A signal lamp is connected to DO3 which serves as a fault output. The main contactor is connected to DO0 and DO1. Two auxiliary contacts are used for contactor checkback monitoring. The motor can be started locally via DI4 (speed one) or DI3 (speed two) and stopped via DI5. The remaining digital inputs can be freely used.

Two-Pole Motor




Circuit diagram of the UMC for controlling a two-pole motor. The checkback contacts k81/k91 are optional.

Circuit diagram of the UMC for controlling dahlander motors. The checkback contacts k81/k91 are optional.

V6

Monitoring Data for Pole-Changing Starter

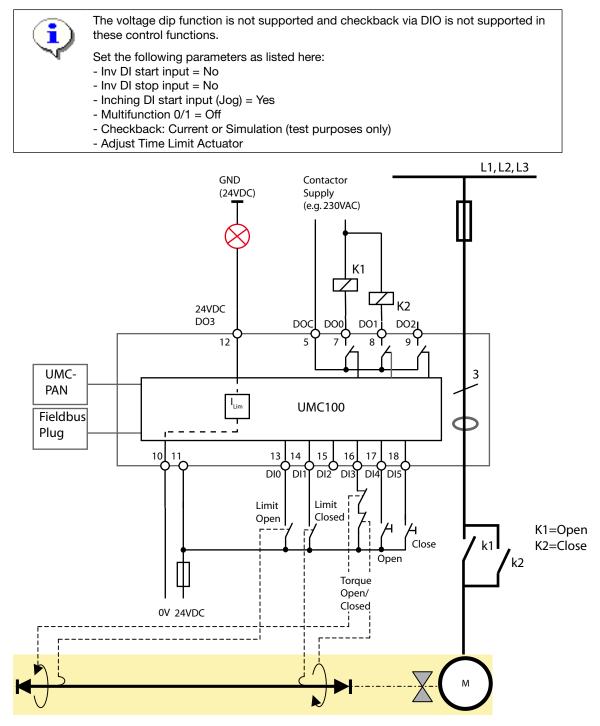
Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0			
0	0	Summary Warning	Summary Fault	Local Control	-	Overload warning	Run Forward	Off	-			
	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	Run Fast Forward	-			
1	2, 3		Motor Current in % of I _e (0% - 800%)									
2	4, 5		Analogue Word (Thermal Load: 0% - 100%)									
3	6, 7		Analogue Word (Time to trip in seconds)									
4	8, 9		Analogue Word (Time to restart in seconds)									
5	10.11				Analog	ue Word						
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0			
	13	-	-	-	-	-	-	-	-			
7	14	-	-	-	-	-	-	-	-			
/	15	-	-	-	-	-	-	-	-			

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data for Pole-Changing Starter

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0	
0	0	-	Fault Reset	Auto Mode	Prepare Emergency Start	-	Run Forward	Off	-	
	1	UMC100 DO2 ¹⁾	-	-	UMC100 24VDC Out ¹⁾	-	-	Run Fast Forward	-	
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0	
	3	-	-	-	-	-	-	-	-	
2	4, 5	Analogue Word								
3	6, 7	Analogue Word								

¹⁾ Controlled by UMC100 if configured as fault output.



The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

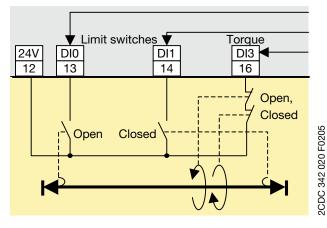
Control Function Actuator 1 - 4

Use this function in a feeder that requires the operation of an actuator that opens/closes e.g. a valve. Please note that the actuator operation mode is not able to keep a valve at a certain setpoint.

Control function = Actuator 2 (Basic circuit)

The control functions Actuator 1, 2, 3 and 4 provide different use of and reaction to the limit switches "Closed" and "Open" as well as the torque switches. The switches must be connected in a predefined manner to DI0, DI1 and DI3.

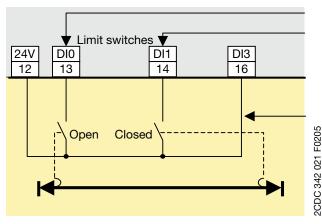
Optionally terminals named 24VDC Out (12) or DO2 can be used as a fault output


Overview:						
Control function	Open <-> Closed					
	Torque open	Limit open	Limit closed	Torque closed		
Actuator 1	-	Stop	Stop	-		
Actuator 2	Stop	Prepare	Prepare	Stop		
Actuator 3	-	Stop	Prepare	Stop		
Actuator 4	Stop	Prepare	Stop	-		

Acutator 1

V6

Open and Closed position via limit switches



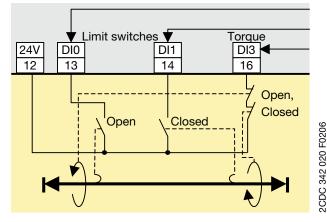
DI0: Motor off, start only in Closed directionDI1: Motor off, start only in Open directionDI3: Fault: motor stops

Remark:

- Torque signals are not necessary but can be used for surveillance.
- After switching off the motor continues to run for some milliseconds due to its rotating mass. Adjustment of the Closed and Open limit switches is necessary to achieve the correct end positions.

Usage without torque switches

DI0: Motor off, start only in Close direction DI1: Motor off, start only in Open direction


Remark:

Connection if torque contacts are not available

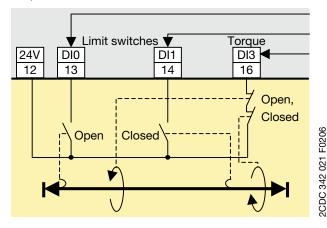
Actuator 2

Open and Closed position via torque and limit switches

*) Start is only possible in the opposite direction after resetting the fault. The torque signal has to disappear within 0.5 s otherwise a fault is generated again. DI0: Preparation for Open limit motor off

DI1: Preparation for Closed limit motor off DI3:

- Motor off, start only in opposite direction


- Fault if not prepared*

Remark:

- The limit switches Open or Closed prepare the stop. Torque Open or Closed stops the motor. Starting is only possible in the opposite direction.
- The single torque signals in the telegram - torque Open or torque Closed - are calculated based on the direction of movement before the stop.
- If after powering up a torque signal is detected and neither an Open nor a Closed limit is present it is presumed that the torque occurred during closing. The start is possible only after fault acknowledgement and only in the opposite direction.

Actuator 3

Open position via limit switch only, Closed position via torque and limit switches

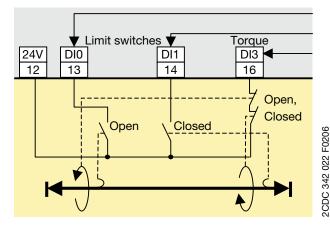
DI0: Motor off, start only in Closed direction

DI1: Preparation for Closed limit off

DI3:

- Motor off if prepared for Closed limit motor off, start only in Open direction
- Fault if not prepared*

Remark:


- The limit switch Open prepares the stop. Torque Open stops the motor. Starting is only possible in the opposite direction
- The single torque signals in the telegram - torque open or torque closed - are calculated based on the direction of movement before the stop.

Actuator 4

V6

Open position via torque and limit switches, Closed position via limit switch only

DI0: Preparation for Open limit motor off

DI1: Motor off, start only in Open direction DI3:

- Motor off if prepared for Open off, start only in Closed direction
- Fault if not prepared or if during closing

Remark:

- The limit switch Closed prepares the stop. Torque closed stops the motor. Starting is only possible in the opposite direction
- The single torque signals in the telegram - torque Open or torque Closed - are calculated based on the direction of movement before the stop.

Definitions and monitoring signals particular to the control functions Actuator 1,2,3 and 4

- Input signals: Open and Closed inputs are active signals, torque input is a closed loop signal.
- The two torque signals are connected in series. The discrete torque signal is created based on the previous direction of movement.

Remark:

If DI2 is not needed as fault input it can be connected to the link between the torque contacts to find out which torque signal is active.

- Run-time Open <-> Closed: The Run-time limit (= Star-delta starting time) must be changed and should be set according to actuator data. Setting the Run-time limit = 1 s disables the supervision.
- Starting from Open or Closed: The limit switch has to open within the start monitoring time of 3 s. Exceeding the time results in the fault signal Open limit switch 1 -> 0 not occurring within 3 s after the Closed command. The start monitoring time can be extended.
- A faulty torque signal in the intermediate position sets the internal fault signal. The motor is stopped and can be started again
 - after fault reset via fieldbus or other AND -
 - only in the opposite direction (previous direction is blocked).

After starting the torque signal must disappear within 0.5 s. Otherwise the internal fault signal is set again. A fault reset and start in the opposite direction can be repeated as often as desired.

- If after powering up a torque signal (0-signal) is present and neither an Open nor a Closed signal is present it is presumed that the torque occurred during closing. The motor can be started:
 - after fault reset via fieldbus or other AND -
 - only in the Open direction

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	Summary Warning	Summary Fault	Local Control	Reverse Lockout Time	Overload warning	Opening	Off	Closing
	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	-	-
1	2, 3			Mot	or Current in 9	% of I _e (0% -	800%)		
2	4, 5			Analogi	ue Word (Ther	mal Load: 0	% - 100%)		
3	6, 7		Analogue Word (Time to trip in seconds)						
4	8, 9	Analogue Word (Time to restart in seconds)							
5	10.11				Analog	ue Word			
	12	DX1xx DI0	DX1xx DI1	DX1xx DI2	DX1xx DI3	DX1xx DI4	DX1xx DI5	DX1xx DI6	DX1xx DI7
6	13	-	-	Runtime Excee- ded	Out of Position	Torque Open	Torque Closed	End Pos Open	End Pos Closed
	14	-	-	-	-	-	-	-	-
7	15	-	-	-	-	-	-	-	-

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data for Actuator 1 - 4

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	-	Fault Reset	Auto Mode	Prepare Emergency Start	-	Opening	Off	Closing
0	1	UMC100 DO2 ¹⁾	-	-	UMC100 24VDC Out ¹⁾	-	-		-
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0
	3	-	-	-	-	-	-	-	-
2	4, 5		Analogue Word						
3	6, 7		Analogue Word						

¹⁾ Controlled by UMC100 if configured as fault output.

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications! V 6

6 Configuring the Fieldbus Communication

The UMC can be integrated into different fieldbus networks with the help of a FieldBusPlug. FieldBbusPlugs exist presently for PROFIBUS (PDP22 / PDQ22), DeviceNet(DNP21), Modbus (MRP21) and CANopen (COP21).

Since the fieldbuses and the various fieldbus master configuration tools are very different no common integration procedure can be described here. In general the following generic steps are usually necessary:

- 1. Make the UMC known to the tool e.g. by importing the device description file (GSD, EDS)
- 2. Create a network and insert nodes like the UMC as required
- 3. Set the UMC parameters according to your needs (if parameterisation from within the system is required)
- 4. Make the I/O signals available in your programming tool (e.g. a IEC61131 based tool)

To use the UMC in a fieldbus network the following parameters should be considered.

Setting the Bus Address

The bus address can be adjusted with the help of the UMC LCD panel. The UMC allows an address to be set between 000 and 255. But there are different limitations depending on the fieldbus in use. Setting the address to 255 means that the UMC will take over the address from a connected FieldBusPlug.

- PROFIBUS: Use addresses from 2 ...125 only.
- DeviceNet: 2-64
- Modbus: With the bus address you also select the baud rate used by the MRP21 FieldBusPlug. Check the MRP21 manual about the available options.
- CANopen: 1-127

Ensure that the chosen bus address is not used twice. If an address is used twice the whole bus line might go out of operation.

Related Parameter: Bus Address

Address Check when using UMC in Motor Control Centres

If the UMC is used in MCCs the address check can be enabled. This ensures that the bus address in the FieldBusPlug and the UMC must match before the bus communication can start. This ensures that in the event of an unintentional permutation of a drawer the bus address stays in place and does not move with the drawer.

A precondition for this function is the separation of FieldBusPlug and UMC. In MCCs the FieldBusPlug is usually mounted in the cable chamber whereas the UMC is mounted in the withdrawable unit. This means that even if the withdrawable is removed the FieldBusPlug stays active, keeps the bus address and can send an error message (missing device) to the control system.

The following cases can occur:

- 1. Neither the UMC100 nor the FieldBusPlug contains a valid address: The UMC does not start to communicate.
- 2. Only the UMC100 contains a valid address: The FieldBusPlug receives the address and saves it. Then the bus communication starts automatically.
- 3. Only the FieldBusPlug contains a valid address (e.g. a new spare UMC is connected) The UMC gets the address from the FieldBusPlug and saves it. Then the communication starts.
- 4. The UMC100-FBP and the FieldBusPlug contain the same address: Operation and communication starts.
- 5. The UMC100-FBP and the FieldBusPlug contain different addresses (e.g. unintentional permutation when installing a drawer): The behaviour of the UMC100-FBP depends on the setting of the parameter Address check.

Case 5a: Address check = Off (= 0) (default)

The FieldBusPlug stores the address received from the UMC100 and communication starts.

Case 5b: Address check = On (1)

- The communication does not start. In the LCD control panel an address fault is displayed

- To start the bus communication the correct address must be selected in the UMC100
- Enter the fault menu with the left hot-key (Addr)

	atch—
UMC: 4	
FBP: 3	
REFERSE 🔲 LOC en	

- Click "Fix" (right hot-key) to select the correct bus address
- After saving the correct bus address the communication starts immediately
- Both the FieldBusPlug and the UMC100-FBP store the adjusted address.

Related Parameter: Address Check

Defining the Bus Fault Reaction

Depending on the application the UMC is used in you might configure the reaction to a bus fault in a different way. The bus fault reaction can be set the following way:

- Retain the present state (either running or stopped)
- · Stop the motor immediately
- Start the motor in a forward direction (if actually in stop mode). If it is already running in a reverse or a forward direction the motor keeps running.
- Start the motor in a reverse direction (if actually in stop mode). If it is already running in a reverse or a forward direction the motor keeps running.

Relevant parameter: Bus Fault Reaction

Ignore Block Parameters

Block parameters can be used to parameterise a device from within the PROFIBUS master using the GSD file. The PROFIBUS master then sends the parameters in one block (this where the name came from) to the device. The block parameters are sent under certain conditions:

- Bus master start-up
- Device start-up
- During normal operation in case of parameter changes

If the UMC shall be parameterized via LCD panel or using the PBDTM the block parameters should not be sent. As it is not possible to stop the bus master from sending the block parameters the FieldBusPlug can be configured to stop forwarding these parameters to the UMC (i.e. ignore them). To do so set parameter "Ignore Block Parameter" to "Ignore".

Universal Motor Controller UMC100-FBP

V 6 Technical Description

A typical customer error message if this parameter was not set is as follows: "We set up everything correctly and the plant worked for weeks without problems. But then suddenly the UMC lost its parameters."

What happened: The UMC was configured e.g. via LCD panel during commissioning. Then weeks later the bus master or controller was restarted for whatever reason and therefore sent the default UMC block parameters as they were never set.

If you are unsure if the parameter was set correctly you can also lock the parameters in the UMC. Then no parameter changes are possible anymore until the lock is reset. If locked the small "lock" icon \mathbf{B} is set in the LCD display.

Relevant parameter:

Ignore Block Parameters.

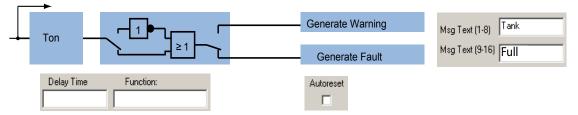
7 Using Expansion Modules

V6

In this chapter you learn how to use the UMC expansion modules. Expansion modules allow you to increase the number of usable inputs and outputs. For information on how to connect the IO modules to the UMC read the 'Installation' chapter. The IO module's status messages are described in the chapter ' Error Handling, Maintenance and Service'.

Activating a Digital IO Module (DX111/122)

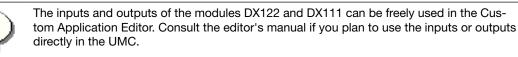
To activate a digital IO module set parameter DX1xx Enabled to On. If a module is enabled the UMC monitors the presence of the module and creates by default a fault in the event that the module is missing (-> parameter 'Missing Module Reaction').


Using the Digital Inputs

By default all eight digital inputs are available in the fieldbus monitoring telegram. They can thus be directly used in the PLC/DCS application.

For inputs 1DI0 to 1DI5 the following additional options exist:

- Each input can separately trigger a fault or warning with a unique error code and error message that is shown on the UMC's LCD panel.
- A fault can be automatically cleared when the cause of the fault is rectified.
- Each input can optionally be delayed. (see parameter DX1xx DI delay for details)


The following figure shows the internal data flow of the inputs 1DI0 - 1DI5.

▲ Functionality of the six digital inputs 1DI0 - 1DI5 of the DX111 and DX122 modules.

Using the Relay Outputs

The 4 relay outputs are connected to the fieldbus command telegram and can be freely used by the control system. By default they are not used by the UMC in any way. See the fieldbus command telegram for the relevant bit positions.

Using the Analogue Output

The The analogue output can be used to drive an analogue instrument to e.g. display the motor current. It can work in the following modes: 4-20mA, 0-20mA, 0-10V

Relevant Module Parameters:

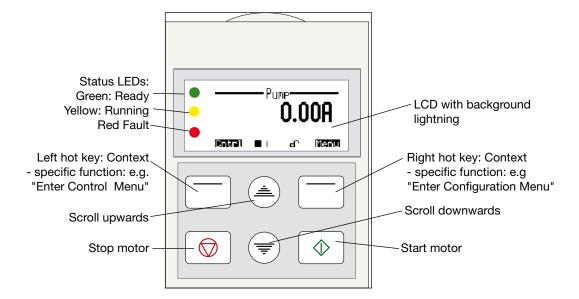
DX1xx Enabled	• Aux. Inp 1 - 6 Acknowledge Mode				
•Aux. Inp 1 - 6 Delay	• Aux. Inp 1 - 6 Reaction				
•DX1xx DI Delay (Delay for all inputs)	• Aux. Inp 1 -6 Message Line 1 / Line 2				
Analog Out0 Type	Missing Module Reaction				
Analog Out0 Error Reaction					

8 The LCD Control Panel UMC100-PAN

Overview

V6

The UMC100-PAN provides a easy to use multi-language user interface for the UMC100. In this chapter you will find the following information:


- menu structure
- how to operate the UMC100 with the LCD panel
- how to acknowledge faults
- how to watch process data
- how to configure the UMC100 using the LCD panel

See chapter the "Installation" chapter if you are looking for information on how to connect and wire the LCD panel.

The UMC100-PAN can be either plugged directly on the UMC or mounted on the switchgear door using the door mounting kit. The following diagram shows the LCD panel with its buttons, LEDs and LCD area.

This chapter describes how the parameters can be accessed from the UMC100-PAN. Please look into section "Parameters and Data-Structures on a Fieldbus" for an explanation of the parameters and also for an alphabetical list.



Monitoring Status Information

On the top level of the menu tree which is entered after powering on, several information masks show the overall status of the UMC and connected IO. To switch between the different masks, use the scroll up or scroll down keys. The LCD is split into the following different logical areas:

- Header: At the top of the LCD the tag name or the submenu title is shown.
- Main Area: Main display area to display process data or configuration data etc.
- Icon Line: At the bottom of the LCD the actual function of the hot keys (left / right) is shown. In the middle further status information is displayed as icons. The table below shows the different icons and their meaning.

Left hot key Status Icons Right hot key function function

Icon	Meaning
i	Warnings available. Go into submenu Maintenance/Service->Diagnosis->Present Warn- ings to find out the reason for the warning.
	Motor stopped
▶, ₩	Motor running forwards / fast forward
4, €	Motor running backwards / fast backwards
LOC	Local control mode 1/2 active
REM	Remote (auto) control mode active
8	Parameters unlocked / locked: If parameters are locked (indicated with the closed lock in the icon bar) they cannot be changed either by the fieldbus or using the panel. To change parameters you have to unlock them first. If password protection is enabled the password has to be typed in first before a parameter can be changed.
°C	Cooling time running. Motor cannot be started until the cooling time is over.
t	Reverse lockout time is running. The motor cannot be started in opposite direction until the reverse lockout is over.

Pressing the up/down keys brings you to the next/previous menu on the same level. Pressing Menu enters the first menu level. Pressing Cntrl brings you into the motor control menu.

The figure on the next page shows the top level menu structure and the main configuration menu.

The Menu Tree

If you press **Mann** you enter the main configuration menu. The parameters are organised into groups as described in the section "Parameters and Data Structures on a Fieldbus->Parameter Organisation" and as shown in the diagram on the following page.

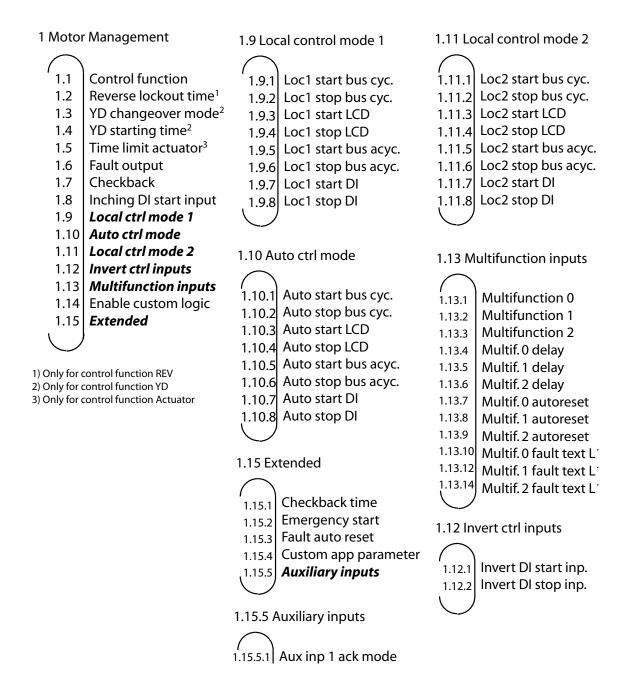
The scroll bar on the right indicates the present location in a configuration menu with several menu items. On the top of the mask the active menu name (parent menu) is shown.

V 6

Top Level Menu Main Configuration Menu From any top mask Menu -LMC100 • Main menu• 1: Motor management FBP-address (right hot key) Motor management Fieldbus related settings Address (e.g. control function) 🖬 i 100 an Cotell No. (,) (\blacktriangle) $\overline{}$ From any mask Back Рсин Main menu-2: Motor protection Motor Protection Ľ٦ related settings Current [%] (left hot key) (e.g. trip class) LOCO Feleri Риян •Main menu• 3: Fieldbus related Motor Communication 0 00F settings (e.g. bus Current [A] address) LICE Select - Main menu-. ⁰LMP 4: IO module Status UMC I/O modules related settings **Digital Inputs** ●DIGODI4●DI5 (e.g. DI function) Hen 🔳 LOC 🛛 🗖 🗖 🗖 Pi mi Main menu-Status UMC 5: Display related 00000001 Display **Digital Outputs** settings OD02 OD03 (e.g. Language) Citatel 🖬 i TERM LOC & SEIR LIMC4 00 'Main menu' 6: Maintenance User-defined - I MC 1 69 Ther Maintenance/service and service mask (1-5) 0.0 01 INCOMPANY. settings and tasks Cntr 01 0 LOC 8 198 (e.g. Trip History) -UNC108 0 TTC Yoton prenation hrs Øs 0h:26m:50s 🖬 i 100 af i E.

Masks on the top level and the main configuration menu masks.

With the right soft key **Select** you can enter the selected submenus which are described in the following sections.



Motor Management Parameters

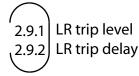
Within this submenu all motor management related parameters can be configured. The diagram below shows the organisation of the different parameter masks in the menu tree.

The parameters are described in details in the section "Parameters and Data Structures on a Fieldbus->Parameter Organisation-> Motor Management Parameters". A description of the parameters of the menu entry "Auxiliary inputs" can be found in the section "Parameters and Data-Structures on a Fieldbus->Parameter Organization-> Function Block Related Parameters".

V6

Motor Protection Parameters

Within this submenu all motor protection related parameters can be configured. The diagram below shows the organisation of the different parameter masks in the menu tree.


V6

The parameters are described in detail in the section "Parameters and Data Structures on a Fieldbus->Parameter Organisation-> Motor Protection Parameters".

2 Protection

- 2.1 Setting le 1
- 2.2 Setting le 2
- 2.3 Trip class
- 2.4 Current factor
- 2.5 PTC
- 2.6 Cooling mode
- 2.7 Cooling time
- 2.8 Restart level %
- 2.9 Locked rotor (LR)
- 2.10 Thermal load warnlev
- 2.11 Phases
- 2.12 **Over/under current**
- 2.13 Voltage DIP

2.9 Locked Rotor

2.11 Phases

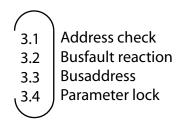
- 2.11.1 Phase loss protect.
- 2.11.2 Phase imb. trip lev.
- 2.11.3 Phase imb. warn lev.
- 2.11.4 Phase reversal
- (2.11.5) Check phase sequence

2.12 Over / under current

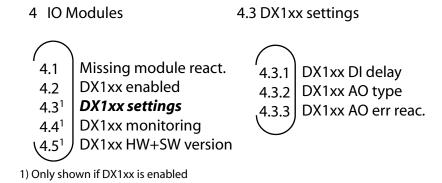
- 2.12.1 Low curr trip level
- 2.12.2 Low curr trip delay
- 2.12.3 Low curr warn level
- 2.12.4 Low curr warn delay
- 2.12.5 High curr trip level
- 2.12.6 High curr trip delay
- 2.12.7 High curr warn level
- 2.12.8 High curr warn delay

2.13 Voltage DIP

- 2.12.1 Enable voltage DIP
- 2.12.2 Voltage DIP duration
- 2.12.3 Autorestart enable
- 2.12.4 Autorestart window
- 2.12.5) Autorestart delay


FieldBusPlug / Issue: 11.2009

Communication Parameters


Within this submenu all communication related parameters can be configured. The diagram below shows the organisation of the different parameter masks in the menu tree. The parameters are described in details in the section "Parameters and Data Structures on a Fieldbus->Parameter Organisation->Communication Parameters".

3 Communication

IO Module Parameters

Within this submenu all IO module related parameters can be configured. The diagram below shows the organisation of the different parameter masks in the menu tree. The parameters are described in details in the section "Parameters and Data Structures on a Fieldbus->Parameter Organisation->IO Module Parameters".

Display Parameters

Within this submenu all LCD display related parameters can be configured. The figure below shows the organization of the different parameter masks in the menu tree. The parameters are described in details in the section "Parameters and Data Structures on a Fieldbus->Parameter Organization->Display Parameters".

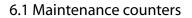
5 Displ	ау	5.11 Password protection
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Language Tag name Backlight User display 1 User display 2 User display 3 User display 4 User display 5 User display 4 text User display 5 text Password protection Panel HW + SW Versior	5.11.1 5.11.2 Password enabled Change password
(3.12)		•

V6

V6

Maintenance and Service Parameters/Actions

Within this submenu all maintenance and service related parameters / actions can be configured. The figure below shows the organisation of the different parameter masks in the menu tree.


Menu point 6.3.1 shows the list of errors and their occurrence in seconds since the start-up of the UMC. After a power cycle the history buffer is cleared. Use the up/down keys to scroll within the list.

Menu point 6.3.2 shows present warnings. The "i" in the icon bar on the top level masks indicates the presence of warnings. Use the up/down keys to scroll within the list.

Menu point 6.4 lists all changed parameters. This is useful if you want to verify the parameterization was carried out correctly or when calling a technical specialist who wants to know what has been configured.

6 Maintenance / service

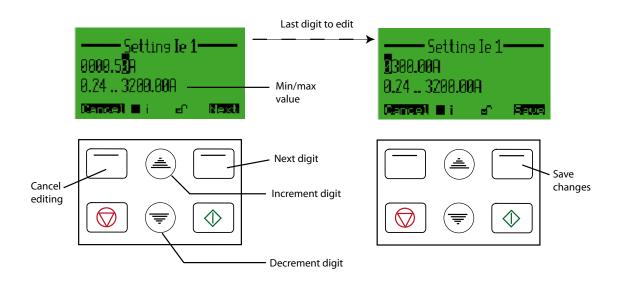
- 6.1 **Maintenance counters**
- 6.2 Service tasks
- 6.3 **Diagnosis**
- 6.4 Changed parameters
- 6.5 UMC100 SW version

- .1 Motor operation hours
- 6.1.2 Number of starts
- 6.1.3 Number of trips

6.2 Service Tasks

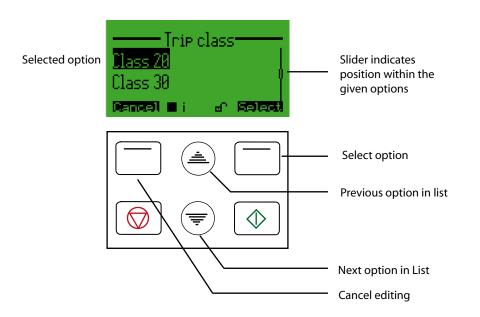
6.2.1
6.2.2
6.2.3
6.2.4
Reset parameters
Reset oper. hours
Reset num. of starts
Reset num. of trips

6.3 Diagnosis


Adjusting Parameters

Adjusting a Numerical Value

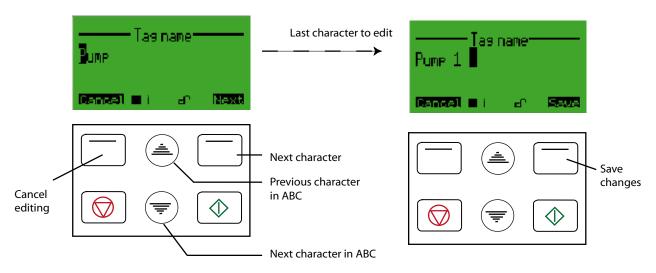
This type of dialog allows a numerical value to be specified within the given limits. The single digits must be defined from right to left. If the last digit was reached the right hot key changes from 'Next' to 'Save'. When pressing 'Save' the specified value is stored in the UMC. The mask can be exited at any time with the Cancel button (left hot key). In this case the changes are discarded.


The following example shows how to set the nominal motor current I_{a1}.

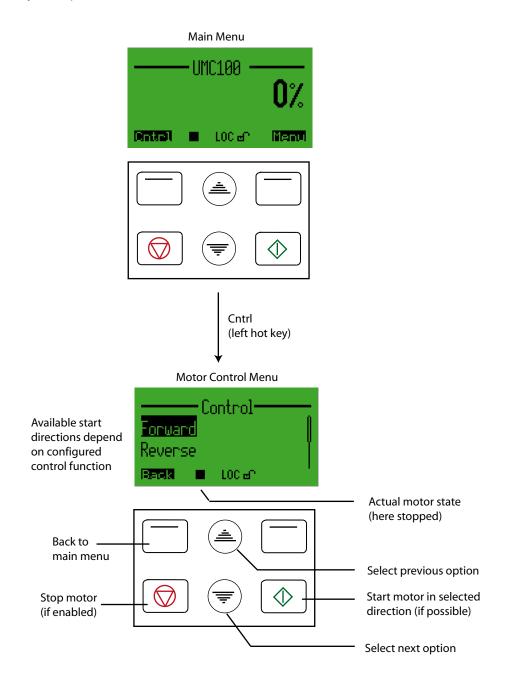
To change the digit use the up/down keys. As it is not possible to enter a value outside the given limits start editing the first digit by pressing the up button. If you reach 10, a 0 is displayed in the first digit and a 1 in the second digit. Press the left hot key now to go to the next digit.

Selecting an Option from a List

This type of dialog allows an item to be selected from a given list of options. With the up/down keys you can scroll through the list. The slider on the right shows the current position within the list. Pressing 'Select' chooses the currently marked item (inverted). Pressing 'Cancel' exits the dialog and discards the selection.

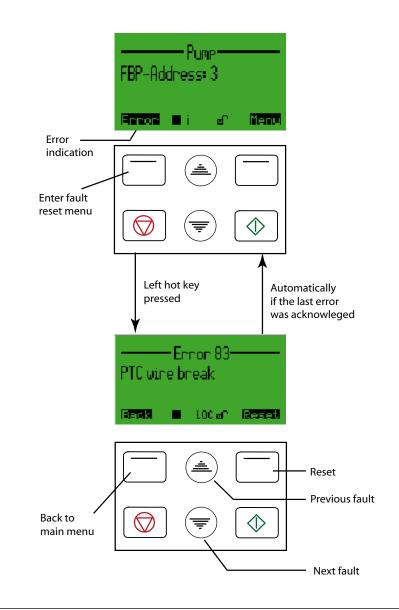


Specifying a Text String


V6

This type of dialog allows a character string to be specified e.g. an error message. With the up/down keys you can scroll through the alphabet and several special characters. Pressing 'Next' selects the next character to edit. When the last character is reached you can save the text string by pressing 'Save' or discard the changes pressing 'Cancel'.

If control via LCD panel was enabled, it is possible to start/stop the motor from the 'Control' menu which can be accessed from the top level menu when pressing the left hot key (Cntrl). Depending on the selected control function a list of possible start directions is displayed. Pressing the green start button starts the motor in the selected direction. Pressing the red stop button stops the motor. The motor status icons show you the present status of the motor.


Acknowledge a Fault

V6

If a fault is present the 'Cntrl' menu is replaced with the menu to acknowledge faults (top level menu, left hot key). While a fault is present it is not possible to enter the Motor Control menu until the fault has been acknowledged. When entering the error menu the latest fault message is displayed. By pressing the right hot key 'Reset' you acknowledge the fault.

If there is another fault pending it is displayed and can also be acknowledged until there is no further fault pending. Using the up/down keys it is possible to scroll through the list of present faults before acknowledging them. If the last fault was acknowledged the main menu is automatically entered.

The menu can be exited at any time pressing the left hot key 'Back' without resetting any faults.

The table in the section "Error Handling, Maintenance and Service->Error Handling of the UMC" lists all diagnosis and fault messages and potential root causes for the fault. It gives you a first indication of where to look for a fault and how to fix it. Use the error number shown in the heading (Error 83 in the example) for the look-up table.

V 6 Technical Description

9 Error Handling, Maintenance and Service

Within this chapter you will find the following information

- Error handling of the UMC
- Detailed explanation of all error and diagnosis messages
- Functions related to maintenance and service

Error Handling of the UMC

When the UMC detects a fault condition the fault becomes latched. Once a fault becomes latched, it remains latched - even if the underlying fault condition is eliminated - until acknowledged by a fault reset command.

Automatic Reset of Protection Faults

The setting of the "Fault autoreset" parameter determines how the UMC manages protection trips.

- Off (the default setting): A protection trip must be acknowledged by the user. This can be done via LCD panel, fieldbus or the multifunction inputs DI0-DI2 if configured.
- On: A protection trip is automatically acknowledged without intervention of either a human operator or the remote PLC if the trip condition has gone (e.g. cooling time over).

Fault History

The DTM provides access to the fault history. The last 16 faults and their arrival time in seconds since power on are displayed. If the UMC is switched off the fault history is cleared.

UMC100 Fault Indication

The UMC offers the following possibilities for indicating a fault.

- Fault indication via digital outputs: The outputs DO2 and DO3 can be used to signal a summary fault. DO2 is a relay output that uses the same supply as DO0 and DO1. DO3 is a 24VDC output and can be used to drive a signal lamp as an example. The fault outputs can be configured with the parameter *Fault Outputs*.
- Fault indication via LEDs on the UMC: The red fault LED is switched on in the event of a fault and remains on until the fault is acknowledged.
- Fault messages on the LCD panel: See the table below.
- Signalling via fieldbus: In the event of a fault the "Fault Bit" in the cyclic communication telegram is set to logical-1. Furthermore a diagnosis telegram (if supported by the used fieldbus) is generated that describes the fault details.

Fault Messages

The following table lists all diagnosis and fault messages and potential root causes for the fault. It gives you a first indication of where to look for a fault and how to fix it.

Indicator	Code	Source / Root Cause	Possible Cause / Suggested Action
Thermal overload trip	0	Load side	Trip because of thermal overload of the motor.
			Check process conditions Check if the cooling time is too short Check I _e and trip class settings Check current factor if configured
Phase loss	1	Supply side Load side Contactors	At least one phase current is below the phase loss threshold Check for blown fuse Check for loose contacts Check contact wear

Indicator	Code	Source / Root Cause	Possible Cause / Suggested Action
Phase imbalance	2	Supply side Load side	The current in one phase is below the adjusted threshold.
		Contactors	Check supply side Check for loose contacts Check contact wear
Locked Rotor	3	Load Side	The rotor is locked. Load too heavy for motor.
Thermal model reached warning level	4	Load Side	Thermal model reached warning level. If overload condition remains a trip soon follows.
			Check motor load condition Check for mechanical problems
PTC overtemperature	5	Load side Environment	PTC element indicated that motor temperature is too high
			Check motor environment and load conditions
PTC wiring problem	6	Summary message. See detailed messages for more information.	See codes 83/84
Check-back error	7	Summary message. See detailed messages for more information.	See codes 8082
Motor current below low current trip threshold	8	Process Load side Load side mechanics	Motor current is below user-defined threshold e.g. motor running idle, dry running pump, conveyer belt broken
			Check motor load and motor / pro- cess conditions. Wait until cooling time is over.
Motor current below low current warning threshold	9	Process Load side Load side mechanics	Motor current is below user-defined threshold e.g. motor running idle, dry running pump, conveyer belt broken
			Check motor load and motor / pro- cess conditions
Motor current above high current trip threshold	10	Load side	Motor current above threshold caused e.g. by jammed equipment
			Check process conditions (remove blocking cause). Wait until cooling time is over.
Motor current above high current warning threshold	11	Load side	Motor current above user-defined threshold.
			Check motor load and motor / pro- cess conditions.
Earth fault (external or internal sensor) above trip	12	Load side electrical	Connection between one or more phases and ground
threshold			Check wiring / motor (isolation prob- lem)
Earthfault current above warning threshold	13	Load side electrical	See above

Indicator	Code	Source / Root Cause	Possible Cause / Suggested Action
UMC self-test error	14	Electronics	Hardware fault detected
			Replace UMC
Actuator problem	15	15 Load side mechanics	Open/close time of actuator exceed- ed because of tight valve or other mechanical reasons.
			Check runtime parameter and limit and torque switch wiring
IO module missing	16	Electronics, Wiring	Communication cable not connected Cable break or IO module hardware error.
Custom application error (e.g. download incom- plete)	17	Configuration	An unrecoverable error was detected while processing the custom applica tion (e.g. checksum error)
			The version of application editor and UMC are not compatible
IO module error	18	Electronics	A self-test error was detected in an IO module.
			Check the LEDs on the module Replace the module
Aux1: Error or warning triggered from auxiliary function block input 0	19	User-defined	The digital input of an IO module has created a trip/warning.
Aux2: Error or warning triggered from auxiliary function block input 1	20	User-defined	 Reason depends on what you have connected to the input.
Aux3: Error or warning triggered from auxiliary function block input 2	21	User-defined	Note: If the "AuxWarnFault" function block is used in a different way than
Aux4: Error or warning triggered from auxiliary function block input 3	22	User-defined	in the predefined applications also other inputs than the DX1xx can be the fault source.
Aux5: Error or warning triggered from auxiliary function block input 4	23	User-defined	
Aux6: Error or warning triggered from auxiliary function block input 5	24	User-defined	
Multifunction input 0	25	User-defined	A multifunction input of the UMC has
Multifunction input 1	26	User-defined	triggered a trip.
Multifunction input 2	27	User-defined	 The reason depends on what you have connected to the input.
Cooling time running	45	Process, Load side	Motor was tripped due to thermal overload. Restart is possible after cooling time is over
Parameter out of range	54	Electronics, Configuration	Someone tried to write a parameter which is outside the specifications
			Check the parameter number that is causing the problem and change the value. When writing parameters from within a a PLC check your program.

V 6

Indicator	Code	Source / Root Cause	Possible Cause / Suggested Action
Torque open in intermedi- ate position	64	Actuator mechanics	Tight operation or wiring problem.
Torque close in intermedi- ate position	65	Actuator mechanics	Tight operation or wiring problem.
Pos. open and closed at same time	66	Actuator mechanics	Wiring / position switch problem
End pos. open not left within specified time	67	Actuator mechanics	Wiring / position switch problem or wrong adjustment of position switch.
End pos. closed not left within specified time	68	Actuator mechanics	Wiring / position switch problem or wrong adjustment of position switch.
End position open with- out command	69	Actuator mechanics	Wiring / position switch problem.
End position closed with- out command	70	Actuator mechanics	Wiring / position switch problem.
Left pos. open without command	71	Actuator mechanics	Wiring / position switch problem.
Left pos. close without command	72	Actuator mechanics	Wiring / position switch problem.
Motor operation hour exceeded	74	Load side mechanical	Max. motor operation hours reached. Perform motor maintenance Reset counter
Wrong password	76	Electronics	
Line frequency out of range	77	Supply side	Check supply
Wrong phase sequence (reversal)	78	Supply side, Load side	Phase order is not L1/L2/L3.
CB relay 0	80	Wiring, Contactors	Expected feedback from a contactor is missing after checkback time was over. Check wiring of auxiliary contact to
			the correct UMC input. Check contactor Increase checkback time
CB current	82	Contactors, Supply side, Load side	No motor current after motor was switched on and checkback time was over. Or motor current falls below 20% while motor is running.
			Check supply side Check that I _e was set correctly Check current factor if set Increase checkback time
PTC wire break	83	Wiring	Check between UMC and motor
PTC short-circuit	84	Wiring	Check between UMC and motor

V6

Indicator	Code	Source / Root Cause	Possible Cause / Suggested Action
DX111/DX122 module missing	85	Electronics	An IO module does not respond during start-up of UMC. See detailed diagnosis byte to find out which module is missing.
			Check wiring between UMC and mod. Check supply of module Check status LEDs of the module
Overload analog output DX111/DX122	92	Wiring, connected meter has a defect	Check wiring, short circuit at ana- logue output
Wire break analogue output DX111/DX122	93	Wiring	Check Wiring
Self-test failure DX111/ DX122	94	Wiring	Check Wiring

Resetting Parameters to Factory Defaults

It is possible to reset all parameters to the factory default settings. The fieldbus address is not affected from the reset command. Also the different maintenance counters are not affected but must be resetted manually at the UMC100-PAN.

The reset command can be activated via:

• UMC100-PAN

Resetting the Password

The password can always be set or disabled using the UMC100 DTM (PBDTM) or using the UMC100-PAN.

Reading and Resetting Maintenance Counters

Preventive maintenance is the best way to ensure the long service life of any equipment.

The UMC provides several counters which help to better plan maintenance activities or to track down an existing problem.

- Number of motor starts can help to identify worn-out power contacts or to determine on contactor wear
- Number of protection trips
- Motor operation hours can help to assess the bearing status and its lubrication

The maintenance counters are available at the UMC100-PAN and in the PBDTM.

Three LEDs show the module status. The following table explains the status messages.

Status			Explanation	
Green LED	Yellow LED	Red LED		
On	On	On	Self-test during start-up	
Flashing	Off	On	Communication with UMC was interrupted. Relay outputs switched off.	
			Possible cause: Wiring between UMC and IO module broken	
			Possible corrective measure: Check wiring and check that the module was activated in the UMC configuration.	
Flashing	Off	Off	Waiting for communication with UMC. Module is ready.	
			Possible cause: Wiring between UMC and IO module broken.	
			Possible corrective measure: Check wiring and check that the module was activated in the UMC configuration.	
On	Off	Off	Cyclic data exchange with UMC. No diagnosis.	
On	Flashing	Off	Cyclic data exchange with UMC. Diagnosis exists.	
Irrelevant		Flashing	Hardware defect.	
		Flashing	Possible corrective measure: Replace module.	

Replacing a UMC100

The UMC and the current transformer are calibrated together in the ABB factory. Therefore the UMC must be completely replaced.

The UMC can be disconnected from the FieldbusPlug without disturbing the fieldbus communication and the other slaves. The FieldbusPlug is supplied via the voltage conducted together with the bus lines. The FieldbusPlug keeps the actual slave address and informs the control system that the connected device is disconnected.

Set the parameters in the new UMC depending on your parameterisation concepts.

After mounting and connecting a new UMC, the communication starts up again.

Replacing a DX1xx IO Module

DX1xx modules are automatically parameterized by the UMC if the communication between UMC and IO module has been established. No further user actions are required.

Requesting Support

If you need support we kindly ask you to contact your local ABB representative using the template provided at the end of this manual.

A1 Parameters and Data Structures on a Fieldbus

In the following chapter you find a detailed description of all UMC parameters, the format of the command monitoring and diagnosis telegrams. Furthermore the information is provided of how the UMC data is mapped to the different FieldbusPlugs

Monitoring Data

V6

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	Summary Warning	Summary Fault	Local Control ³	Reverse Lockout Time ³	Overload warning	Run For- ward ^{1,3} / Opening ^{2,3}	Off ³	Run Re- verse ^{1,3} / Closing ^{2,3}
	1	UMC100 DI5	UMC100 DI4	UMC100 DI3	UMC100 DI2	UMC100 DI1	UMC100 DI0	Run Fast Forward ⁴⁾	-
1	2, 3			Mot	or Current in 9	% of I _e (0% -	800%)		
2	4, 5		Analogue Word (Thermal Load: 0% - 100%)						
3	6, 7		Analogue Word (Time to trip in seconds)						
4	8, 9			Analog	ue Word (Time	e to restart ir	seconds)		
5	10.11				Analog	ue Word			
6	12	DX1xx DI7	DX1xx DI6	DX1xx DI5	DX1xx DI4	DX1xx DI3	DX1xx DI2	DX1xx DI1	DX1xx DI0
	13	-	-	-	-	-	-	-	-
7	14	-	-	-	-	-	-	-	-
	15	-	-	-	-	-	-	-	-

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Command Data

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
0	0	-	Fault Reset	Auto Mode ³	Prepare Emergency Start	-	Run For- ward ^{1.3} / Opening ^{2,3}	Off ³	Run Re- verse ^{1,3} / Closing ^{2,3}
	1	UMC100 DO2	UMC100 DO1	UMC100 DO0	UMC100 24VDC Out	-	-	Run Fast Forward 4)	-
1	2	-	-	-	-	DO1xx DO3	DX1xx DO2	DX1xx DO1	DX1xx DO0
	3	-	-	-	-	-	-	-	-
2	4, 5				Analog	gue Word			
3	6, 7		Analogue Word						
4	8,9	Analogue Word							
5	10,11		Analogue Word						

¹⁾ Not for Actuator 1 ... 4

²⁾ Only for Actuator 1 ... 4

³⁾ Not for Overload Relay and Transparent

⁴⁾ Only for Pole-Changing Starter

The table above represents the data allocation as realised with the built-in standard applications. It may differ for customer-specific applications!

Diagnosis Data

Word	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
	0	Checkback missing	PTC wiring failure	PTC hot	Pre- waring thermal model	Locked rotor dur- ing start- up (stall)	Phase imbalance	Phase loss	Thermal overload trip
0	1	Actuator problem ¹	UMC self- test error	Earth fault pre-warn- ing	Eart fault trip (internal or externally triggered)	I above high current warning threshold	l above high cur- rent trip threshold	I be- low low current warning threshold	I below low cur- rent trip threshold
	2	Trip/Warn- ing from AuxFault function block input 5 ²⁾	Trip/Warn- ing from AuxFault function block input 4 ²⁾	Trip/Warn- ing from AuxFault function block input 3 ²⁾	Trip/Warn- ing from AuxFault function block input 2 ²⁾	Trip/Warn- ing from AuxFault function block input 1 ²⁾	HW fault on IO module	Custom applica- tion error	IO module missing
1	3	-	-	-	-	Trip trig- gered from Multifunc- tion input DI2	Trip trig- gered from Multifunc- tion input DI1	Trip trig- gered from Multi- function input DI0	Trip / Warn- ing from AuxFault function block input 6 ²⁾
	4	-	-	-	-	-	-	-	-
2	5	-	-	-	-	-	-	-	-
3	6	Extended diagnosis is avail- able ¹⁾ .	Param- eter out of range	-	-	-	-	-	-
	7	Fault code. S of the code.	See section "E	Frror Handling	, Maintenanc	e and Servic	e-> Fault Mes	sages" for a c	description

¹⁾ For details see extended diagnosis byte

²⁾ By default these diagnosis bits are triggered from the digital inputs of the DX111/DX122 IO module. If you have created an own custom application these diagnosis bits might be triggered for other reasons (see handbook "Custom Application Editor" for more details).

Accessing Data on PROFIBUS

V6

On PROFIBUS the device parameters, monitoring data and the command data size is described in the GSD file and mapped to the data telegrams cyclically exchanged between the PROFIBUS master and the UMC. The diagnosis data is transferred if needed via the extended PROFIBUS diagnosis also described in the GSD file. Device parameters are transferred in one block during bus start or UMC start from the PROFIBUS master to the UMC. See also the sections "Configuring the Fieldbus Configuration" and "Commissioning->Configuration from within the control system".

Accessing Data on Modbus

On Modbus the data is provided in so-called registers. A Modbus master can read and write data on these registers. UMC data is accessible on the following registers:

Modbus Function Code	Register Address	Content
1	0x0000	Monitoring Data Bytes 0,1
3	0x0200 (hex)	Monitoring Data Words 1 - 7. Plesae note that words 6 and 7 contain binary data but are read as words!
15	0x0100 (hex)	Command Data Bytes 0,1,2,3
16	0x0300 (hex)	Command Data Words 1 - 5
3	0x2000 (hex)	Diagnosis Data Plesae note that diagnosis data is transmitted as words but contains bit information!

For more information about integrating the UMC in a Modbus network please refer to the MRP21-FBP (Modbus plug) technical manual.

Accessing Data on DeviceNet

On DeviceNet the device parameters, monitoring data and the command data size is described in the EDS file. Monitoring, command and diagnosis data is mapped to the data telegrams which are cyclically exchanged between the DeviceNet master and the UMC. For more information about device parameterisation in DeviceNet networks please refer to the DNP21-FBP (DeviceNet plug) technical manual.

Accessing Data on CANopen

On CANopen the device parameters, monitoring data and the command data size is described in the CANopen EDS file.

By default

- command data is mapped to RPDO1 for binary data and RPDO3 for analogue data.
- monitoring data is mapped to TPDO1 for binary byte 0 and 1
- analogue monitoring data words 1-5 are mapped to TPDO3/4 . In addition the remaining binary data (byte 12 15) are mapped to TPDO4 too!

Parameters can be set/read using SDO (Service Data Object) communication.

For more information about the CANopen FieldbusPlug please refer to the technical manual of COP21-FBP (CANopen plug).

The UMC parameters are described in groups reflecting the major function blocks of the UMC. The figures in braces (e.g. 1.1) provide the link the menu strucutre i.e. where it is displayed.

- Motor Management lists all parameters related to motor management i.e. starting and stopping the motor and the control function
- Protection lists all parameters related to the motor itself (e.g. nominal current) and the motor protection functions
- Communication lists parameters related to the fieldbus communication
- IO Module lists all parameters related to the optional IO expansion modules
- Display lists all parameters directly related to the LCD panel

• Function block lists all parameters related to a specific function block.

The column "Adjustable via" shows the possible options to adjust a parameter. "All" means the parameter can be set via UMC100-PAN, GSD-PDP22, GSD-PDQ22, EDS CANopen, EDS DeviceNet and PBDTM. Otherwise the available options are listed.

Motor Management Parameters

Pa- ra- me- ter	Parameter	Description, Explanations	Options	Adjust- able via
	General motor m	anagement parameters		
20	Control function	Defines the type of starter function	Transparent (1), Overload relay (2), <u>Direct starter (3)</u> , Reverse starter (4) Star-delta starter (5), Pole-changing starter (7), Actuator_1 (9), Actuator_2 (10), Actuator_3 (11), Actuator_4 (12)	All
21	Rev lock-out time	Interlocking time before a start com- mand in the opposite direction is ac- cepted	<u>1</u> -255 s	All
24	YD changeover mode	The UMC switches from star to delta either after a defined time or if the motor current has decreased to 90% of I_{e1}	Time (0), <u>Current (1)</u>	All
25	YD starting time (Time Limit Actuator)	Time switching from star to delta. If the changeover mode is set to 'current' this time defines when the motor current must be below 90% of le. Defines the maximum travel time from one end position to the opposite end position.	1s to 360s in steps of 0,1s. Default: 60s Unscaled: 10 3600 Example: A value of 10 means 1s	All
27	Fault output	Behaviour of DO2 or DO3 in the event of a trip or fault.	Off (0), Flashing DO2 (1), On DO2 (2), Invert DO2 (3), Flashing DO3 (4), On DO3 (5), Invert DO3 (6)	All

V 6

Motor Management Parameters Continued

Para- meter Number	Parameter	Description, Explanations	Options	Ad- just- able via
22	Checkback	Selection of the checkback supervision method.	Contact DI0 (1), <u>Current (2),</u> Simulation (3)	All
86	Inching DI start input (Jog)	Enables inching (i.e. jogging) of the start signal originating from a digital input.	<u>No (0),</u> Yes (1)	All
19	Enable custom logic	Enable the execution of a customer defined application	<u>No (0),</u> Yes (1)	All
	Local Control M	ode 1	I	
90	Loc 1 start bus cyclic	Allow the motor to be started via cyclic bus command in local mode 1	<u>No (0),</u> Yes (1)	All
91	Loc 1 stop bus cyclic	Allow the motor to be stop- ped via cyclic bus command in local mode 1	No (0), <u>Yes (1)</u>	
94	Loc1 start LCD	Allow the motor to be started via LCD panel in local mode 1	No (0), <u>Yes (1)</u>	
95	Loc1 stop LCD	Allow the motor to be stop- ped via LCD panel in local mode 1	No (0), <u>Yes (1)</u>	
96	Loc1 start bus acyclic	Allow the motor to be started via acyclic bus command in local mode 1 (e.g. from DTM)	<u>No (0),</u> Yes (1)	
97	Loc1 stop bus acyclic	Allow the motor to be stop- ped via acyclic bus com- mand in local mode 1 (e.g. from DTM)	No (0), <u>Yes (1)</u>	
92	Loc1 start DI	Allow the motor to be started via digital input in local mode 1	No (0), <u>Yes (1)</u>	
93	Loc1 stop DI	Allow the motor to be stop- ped via digital input in local mode 1	No (0), <u>Yes (1)</u>	
	Local Control M	ode 2		

Motor Management Parameters Continued

Para- meter Number	Parameter	Description, Explanations	Options	Adjustable via
106	Loc 2 start bus cyclic	Allow the motor to be started via cyclic bus command in local mode 2	<u>No (0),</u> Yes (1)	All
107	Loc 2 stop bus cyc	Allow the motor to be stop- ped via cyclic bus command in local mode 2	No (0), <u>Yes (1)</u>	
110	Loc2 start LCD	Allow the motor to be started via LCD panel in local mode 2	No (0), <u>Yes (1)</u>	
111	Loc2 stop LCD	Allow the motor to be stop- ped via LCD panel in local mode 2	No (0), <u>Yes (1)</u>	
112	Loc2 start bus acyclic	Allow the motor to be started via acyclic bus command in local mode 2 (e.g. from DTM)	<u>No (0),</u> Yes (1)	
113	Loc2 stop bus acyc	Allow the motor to be stop- ped via acyclic bus com- mand in local mode 2 (e.g. from DTM)	No (0), <u>Yes (1)</u>	
108	Loc2 start DI	Allow the motor to be started via digital input in local mode 2	No (0), <u>Yes (1)</u>	
109	Loc2 stop DI	Allow the motor to be stop- ped via digital input in local mode 2	No (0), <u>Yes (1)</u>	
	Auto Control Mo	ode		
98	Auto start bus cyclic	Allow to start the motor via cyclic bus command in auto mode	No (0), <u>Yes (1)</u>	All
99	Auto stop bus cyclic	Allow to stop the motor via cyclic bus command in auto mode	No (0), <u>Yes (1)</u>	
102	Auto start LCD	Allow to start the motor via LCD panel in auto mode	<u>No (0),</u> Yes (1)	
103	Auto stop LCD	Allow to stop the motor via LCD panel in auto mode	No (0), <u>Yes (1)</u>	
104	Auto start Bus Acyclic	Allow to start the motor via acyclic bus command in auto mode (e.g. from DTM)	No (0), <u>Yes (1)</u>	
105	Auto stop Bus Acyclic	Allow to stop the motor via acyclic bus command in auto mode (e.g. from DTM)	No (0), <u>Yes (1)</u>	
100	Auto start DI	Allow to start the motor via digital input in auto mode	<u>No (0),</u> Yes (1)	
101	Auto stop DI	Allow to stop the motor via digital input in auto mode	No (0), <u>Yes (1)</u>	

V 6

V 6

Motor Management Parameters Continued

Para- meter Number	Parameter	Description, Explanations	Options	Adjustable via
	Invert control (ct	rl) Inputs		
82	Inv DI start input	If inverted (Yes) the DI is nor- mally closed. If not inverted (No) it is normally open.	<u>No (0)</u> , Yes (1)	All
83	Inv DI stop input	If inverted (Yes) the DI is nor- mally closed. If not inverted (No) it is normally open.	No (0), <u>Yes (1)</u>	
		buts: The following parameters a buts as their function can be adj	are all related to DI0-DI2 which a usted in a wide range.	are called
117,	Multif. 0,1,2	Delay until the function of	025,5 in steps of 0,1s	All
118, 119	delay	DI0,1,2 is triggered	Unscaled: 0255 Example: A value of 5 means 500ms	
120, 121, 122	Multif. 0,1,2 auto reset	If DI0,1,2 is configured as external fault an auto reset can be enabled.	<u>No (0),</u> Yes (1)	
135/136 137/138 139/140	Multif. 0,1,2 fault text Line 1, Line 2	If DI0,1,2 is configured as an external fault a text message can be defined which is shown on the LCD panel.	Line one and line two with 8 characters each. Default: <u>"Fault DIx" where $x=0,1,2$</u>	PBDTM, LCD Panel UMC100- PAN
114, 115, 116	Multifunction 0,1,2	Function of DI0/1/2. NC: Normally closed NO: Normally open ¹⁾ Motor running or stopped ²⁾ Always when the motor is running	Off (0): Stop NC (1), Stop NO (2), Ext. Flt NC always ¹ (3), Ext. Flt NO always ¹ (4), Ext. Flt NO Motor on (5), Ext. Flt NO Motor on (6), Prep. emergency start NC (7), Prep. emergency start NO (8) Test position NC (9), Test position NC (9), Test position NO (10), Force local NC (11) Force local NC (11) Force local NC (12) Fault reset NC (13), Fault reset NO (14), Voltage DIP NC (15), Voltage DIP NO(16), CEM11 always ² (Warn) (17), CEM11 alter startup (Warn) (18), CEM11 always ² (Fault) (19), CEM11 after startup (Fault) (20)	All
	Extended			
23	Checkback time	The maximum delay between the output relay was closed until the checkback signal is present (signal at DI0 present or motor current > 20 % depending on parameter Check-back)	0.1, 0.2, 0.3, 0.4 , <u>0.5</u> 25.5 in steps of 0.1s Unscaled: 0255 Example: A value of 5 means 500ms	All exclu- ding GSD- PDQ22

Motor Management Parameters Continued

Para- meter Number	Parameter	Description, Explanations	Options	Adjustable via
15	Emergency Start	To allow start-ups even if the thermal overload protection would prevent them.	<u>Off (0)</u> , On (1)	All
14	Fault auto reset	Automatically reset of se- lected protection faults (PTC, Overload (EOL), Unbalance). Faults triggered from the UMC100 multifunction inputs and the IO module are not automatically reset.	<u>Off (0)</u> , On (1)	All
81	Custom app parameter	Allows to specify a value which is available in the cus- tom application.	<u>0</u> 255	All

Protection Parameters

Para- meter Number	Parameter Name	Description, Explanations	Options	Adjust- able via
	Protection Para	ameters	•	
29	Setting le 1	Nominal current of motor for speed 1.	0.243200A in steps of 0.01A <u>Default: 0.50A</u>	All
			Unscaled: 24320000 Example: A value of 24 means 240mA	
30	Setting le 2	Nominal current of motor for speed 2.	See above	All
28	Trip class	Class according to EN/IEC 60947-4-1	Class 5 (0), <u>Class 10 (1),</u> Class 20 (2), Class 30 (3), Class 40 (4)	All
31	Current factor	Current factor when using an ex-	2,3,4,5, <u>100</u> 64000	All
		ternal CT or when the motor wires are fed through the UMC CTs more	Examples:	
		than once.	• 3: motor wires are fed through 3 times	
			• 100: internal CT, no mul- tiple feed-throughs	
			• 12500 means a factor of 125:1	
9	PTC, Therm- istor	Setting for the built-in PTC (Therm- istor) protection. The reaction to hardware cannot be set separately.	<u>Disabled (0),</u> Trip(1), Warning(2)	All
48	Cooling mode	After a thermal overload trip which was triggered through the thermal motor model the cooling duration can be defined as fixed time or as a percentage of the thermal load level $(0\%=cold, 100\%=trip)$	<u>Time (0),</u> Restart Level (1)	All
49	Cooling time	The time a restart is inhibited fol- lowing a thermal overload trip trig- gered by the thermal motor model	30 64000s Default value: 120s	All
50	Restart level in %	Below this threshold a motor re- start is accepted.	10100% Default value: <u>30%</u>	All ex- cluding GSD- PDQ22

Protection Parameters Continued

Para- meter Numb- er	Parameter Name	Description, Explanations	Options	Adjust- able via
146	Thermal load warning level	If the thermal model reaches the warning level a warning is generated.	20 <u>100</u>	All ex- cluding GSD- PDQ22
	Locked Rotor			
40	Locked rotor trip level	Current in percentage that should trigger a locked rotor fault during motor start-up. A value of 800% (160) switches off the function.	100% <u>800%</u> in steps of 5% 800% disables the function Unscaled: 20 160 Example: 100 means 500%	All
41	Locked rotor trip delay	The time the motor current must exceed the adjusted threshold before a fault is trig- gered.	0, 0.1, 0.2, 0.3, 0.4, 0. <u>5</u> 25.5s in steps of 0.1s Unscaled: 0255 Example: 5 means 500ms	All
	Phases			
42	Phase loss protection	Trips the motor depending of the trip class within 1.5 -12 seconds in case of a phase loss. This parameter must be set to On during regular opera- tion.	Off (0), <u>On (1)</u>	All
43	Phase imb trip level	Phase imbalance trip threshold. Above this value a trip is gener- ated. A value of 100 disables the trip.	0100% 100% disables the function Default value: 50	All ex- cluding GSD- PDQ22
44	Phase imb warn level	Phase imbalance warning threshold. Above this value a warning is generated. A value of 100 disables the warning.	0100% 100% disables the function	All ex- cluding GSD- PDQ22
45	Phase reversal	If enabled the three phases must be fed through the UMC CTs in the correct order (L1 left, L2 middle, L3 right).	<u>L1L2L3 (0),</u> L3L2L1 (1)	All ex- cluding GSD- PDQ22
46	Check phase sequence	Enables supervision of phase sequence (L1/L2/L3)	<u>Disabled (0),</u> Trip (1), Warning (2)	All ex- cluding GSD- PDQ22
	Over - and Uno	dercurrent		
32	Low curr trip level	Value in % of I/I _e . Below this va- lue a trip is generated. A value of 0% disables the trip.	0100% in steps of 5% Default: 0% 0% disables the function Unscaled: 0 20 Example: 10 means 50%	All

Protection Parameters Continued

Para- meter Numb- er	Parameter Name	Description, Explanations	Options	Adjust- able via
34	Low curr warn level	Value in % of I/I _e . Below this value a warning is generated. A value of 0% disables the	0100% in steps of 5% Default: 50% 0% disables the function	All
		warning.	Unscaled: 020 Example: 10 means 50%	
33	Low curr trip delay	Delay time until a low current trip is triggered.	025.5s in steps of 0.1s Default: 0.5s	All ex- cluding
			Unscaled: 0255 Example: 20 means 2s	GSD- PDQ22
35	Low curr warn delay	Delay time until a low current warning is triggered.	025.5s in steps of 0.1s Default: 0.5s	All ex- cluding
			Unscaled: 0255 Example: 20 means 2s	GSD- PDQ22
36	High curr trip level	Value in % of I/I _e . Above this value a trip is generated. A value of 800% (160) disables	100 <u>800</u> in steps of 5% Default: 800% 800% disables the function	All
		the trip.	Unscaled: 20160 Example: 100 means 500% (100% is nominal current)	
38	High curr warn level	Value in % of I/I _e . Above this value a warning is generated. A value of 800% (160) disables	100800% in steps of 5%. Default value is 150%. 800% disables the function	All
		the warning	Unscaled: 20160 Example: 100 means 500% (100% is nominal current)	
37	High curr trip delay	Delay time until a high current trip is triggered	025.5s in steps of 0.1s Default: 0.5s	All ex- cluding GSD-
			Unscaled: 0255 Example: 20 means 2s	PDQ22
39	High curr warn delay	Delay time until a high current warning is triggered.	025.5s in steps of 0.1s Default: 0.5s	All ex- cluding GSD-
			Unscaled: 0255 Example: 20 means 2s	PDQ22
	Voltage Dip/Lo	ad Shedding		
142	Dip Enable	Enable / Disable function	Off (0), On (1), On + Rapid Cycle Lockout (2)	UMC100- PAN PBDTM
143	Voltage Dip Duration	Max. voltage dip duration time before a trip is signalled.	025.5s in steps of 0.1s Default: 0.5s	All exclu- ding
			Unscaled: 0255 Example: 5 means 0.5s	GSD- PDQ22
144	Autorestart Window	If the voltage dip ends within this time window an autorestart is triggered (if enabled).	0.1 1s in steps of 0.1s Unscaled: 110 Example: 5 means 0.5s	UMC100- PAN PBDTM

145	Autorestart Delay	Delay until the motor is restar- ted	<u>0</u> <u>255s</u>	UMC100- PAN PBDTM
147	Enable Au- torestart	Enables the autorestart of the motor after end of the voltage dip	<u>Off (0)</u> On (1)	UMC100- PAN PBDTM

Communication Parameters

Para- meter Number	Parame- ter Name	Description, Explanations	Options	Adjusta- ble via
17	Address check	Enable check if bus address stored in the UMC is the same as the one stored in the FieldbusPlug.	<u>Off (0)</u> , On (1)	All
18	Busfault reaction	UMC behaviour in the event of a bus fault.	<u>Motor Off (0),</u> Retain (1), Start For (2), Start Rev (3)	All
-	Bus address	Fieldbus address. Depending on the FieldbusPlug used, the permitted ad- dress range is smaller than the one allowed here.	0,1,2,3 <u>255</u>	UMC100- PAN PBDTM
-	Parameter lock	Prevents any parameter changes if set to On.	Unlocked (0), Locked (1)	UMC100- PAN

IO Module Parameters

DX111 / DX122 Parameters

Param- eter Number	Parameter Name	Description, Explanations	Options	Adjustable via
8	Missing Module Reaction	Defines if the UMC creates a fault or a warning in case of a missing IO module.	<u>Error (0)</u> Warning (1)	All
1	DX1xx En- abled	Specify if the module is con- nected to UMC	<u>Off (0)</u> , On (1)	All
151	DX1xx DI delay	Input delay in ms assuming a line frequency of 50Hz	DX111: 3200ms Values are rounded up to the next multiple of 3. E.g.: 7,8,9 -> 9 ms delay In addition to the software delay a fix hardware delay of about 4ms must be considered. DX122: 3200ms Values are rounded to the next multiple of 10. Values below 20 are rounded up to 20. E.g.: 320: 20 ms delay 8190: 90 ms delay	All excluding GSD-PDQ22

Universal Motor Controller UMC100-FBP

V 6 Technical Description

152	DX1xx AO type	Hardware type of the ana- logue output on the DX1xx module.	0 - 20mA (0), 4 - 20mA (1), 0 - 10mA (2), 0 - 10V (3)	All excluding GSD-PDQ22
153	DX1xx AO error reaction	Reaction if the AO detects a short-circuit or wire break condition.	<u>Disabled (0),</u> Trip (1), Warning (2)	All excluding GSD-PDQ22

UMC Display Parameters (5)

Para- meter Number	Parameter Name	Description, Explanations	Options	Adjustable via
123	Language	Language used on the LCD panel	English (0), German (1),	All
124	Tagname	String that is displayed on the LCD panel	String with 8 chars. Default: "UMC"	PBDTM UMC100- PAN
125	Backlight	LCD backlight	Off (0), <u>On (1)</u>	All excluding GSD- PDQ22_
128	User display 1	Process value shown on the top level menu.	Thermal Load (0) DX1xx DI (1) DX1xx DO (2) Operating Hours (3) Number of Trips(4) Number of Starts (5) Max. Startup Current (6) Real Startup Time (7)	All excluding GSD- PDQ22
129	User display 2	Process value shown on the top level menu.	see above (default is 'Max startup current')	
130	User display 3	Process value shown on the top level menu.	see above (default is 'Real startup time')	
131	User display 4	Process value shown on the top level menu.	Binary 1 (0) Binary 2 (1) Analog 1 (2) Analog 2 (3) <u>Time to Trip (4)</u> Time to Cool (5)	
132	User display 5	Process value shown on the top level menu.	see 'User display 4'. De- fault is 'Time to Cool'.	
133	User display 4 text	See custom application manual for more details.	Text string with 8 char- acters describing the displayed value (default text 'TTT')	PBDTM UMC100- PAN
134	User display 5 text	See custom application manual for more details.	Text string with 8 char- acters describing the displayed value (default text 'TTC')	
	Password Protection	n		·
126	Password Protec- tion	Enables the motor control / parameters to be password- protected	Off (0), On for Parameters (1), On for Param. + Mo- tor Control (2)	All exclu- ding GSD- PDQ22
-	Change Password	Password that permits pa- rameters to be changed	<u>0000</u> 9999	UMC100- PAN PBDTM

Function Block Related Parameters

Aux Input Block

In the standard built-in applications the inputs of this function block are connected to the digital inputs of the DX1xx module (see section 'Using Expansion Modules').

Aux inp 1-6 ack mode Aux Inp 1-6 reac- tion	Definition of the fault reset behavior Definition of the input function NC: Normally closed	Manual Reset (0) Auto Reset (1) Disabled (0) Fault (NC) Motor in On/Off (1)	All
	function	Fault (NC) Motor in On/Off (1)	All
	NO: Normally open	Fault (NO) Motor in On/Off (2) Fault (NC) Motor in On (3) Fault (NO) Motor in On (4) Warning (NC) Motor in On/Off (5) Warning (NO) Motor in On/Off (6) Warning (NC) Motor in On (7) Warning (NO) Motor in On (8)	
Aux Inp 1-6 mes- sage Line 1/Line 2	Message text line 1 and line 2	Free text with 8 characters for each line. Default: "Aux DIx" with x=16	DTM, UMC100- PAN
Aux Inp 1-6 delay	Input delay time in mul- tiples of 100ms	<u>0</u> 255 in multiples of 0.1s Example: A value of 5 means 500ms	All exclud- ing GSD- PDQ22
	sage Line 1/Line 2	Aux Inp 1-6 delay Input delay time in mul-	Aux Inp 1-6 mes-sage Line 1/Line 2 Message text line 1 and line 2 Free text with 8 characters for each line. Default: "Aux DIx" with x=16 Aux Inp 1-6 delay Input delay time in multiples of 100ms 0 255 in multiples of 0.1s Example: A value of 5 means

V 6

All Parameters Sorted by Parameter Number

No	Name	Parameter Group	No	Name	Parameter Grou
1	DX1xx Enabled	IO Module Param-	57	Aux Inp 1 Reaction	Aux Input Block
		eters	58	Aux Inp 2 Reaction	Aux Input Block
8	Missing Module React.	IO Module Param- eters	59	Aux Inp 3 Reaction	Aux Input Block
9	PTC, Thermistor	Protection	60	Aux Inp 4 Reaction	Aux Input Block
14	Fault Auto Reset	Motor Management	61	Aux Inp 5 Reaction	Aux Input Block
15	Emergency Start	Motor Management	62	Aux Inp 6 Reaction	Aux Input Block
17	Address Check	Communication	63	Aux Inp 1 Message L1	Aux Input Block
18	Busfault Reaction	Communication	64	Aux Inp 1 Message L2	Aux Input Block
19	Enable Custom Logic	Motor Management	65	Aux Inp 2 Message L1	Aux Input Block
20	Control Function	Motor Management	66	Aux Inp 2 Message L2	Aux Input Block
21	Rev Lock-Out Time	Motor Management	67	Aux Inp 3 Message L1	Aux Input Block
22	Check-Back	Motor Management	68	Aux Inp 3 Message L2	Aux Input Block
23	Check-Back Time	Motor Management	69	Aux Inp 4 Message L1	Aux Input Block
24	YD Change-Over Mode	Motor Management	70	Aux Inp 4 Message L2	Aux Input Block
25	YD Starting Time	Motor Management	71	Aux Inp 5 Message L1	Aux Input Block
27	Fault Output	Motor Management	72	Aux Inp 5 Message L2	Aux Input Block
28	Trip Class	Protection	73	Aux Inp 6 Message L1	Aux Input Block
29	Setting le 1	Protection	74	Aux Inp 6 Message L2	Aux Input Block
30	Setting le 2	Protection	75	Aux Inp 1 Delay	Aux Input Block
31	Current Factor	Protection	76	Aux Inp 2 Delay	Aux Input Block
32	Low Curr Trip Level	Protection	77	Aux Inp 3 Delay	Aux Input Block
33	Low Curr Trip Delay	Protection	78	Aux Inp 4 Delay	Aux Input Block
34	Low Curr Warn Level	Protection	79	Aux Inp 5 Delay	Aux Input Block
35	Low Curr Warn Delay	Protection	80	Aux Inp 6 Delay	Aux Input Block
36	High Curr Trip Level	Protection	81	Custom App Parameter	Motor Manageme
37	High Curr Trip Delay	Protection	82	Invert DI Start Inp.	Motor Manageme
38	High Curr Warn Level	Protection	83	Invert DI Stop Inp.	Motor Manageme
39	High Curr Warn Delay	Protection	86	Inching DI Start Inp	Motor Manageme
40	Locked Rotor Level	Protection	90	Loc 1 Start Bus Cyc	Motor Manageme
41	Locked Rotor Delay	Protection	91	Loc 1 Stop Bus Cyc	Motor Manageme
42	Phase Loss Prot.	Protection	92	Loc 1 Start DI	Motor Manageme
43	Phase Imb Trip Level	Protection	93	Loc 1 Stop DI	Motor Manageme
44	Phase Imb Warn Level	Protection	94	Loc 1 Start LCD	Motor Manageme
45	Phase Reversal	Protection	95	Loc 1 Stop LCD	Motor Manageme
46	Check Phase Se-	Protection	96	Loc 1 Start Bus Acyc	Motor Manageme
	quence		97	Loc 1 Stop Bus Acyc	Motor Manageme
48	Cooling Mode	Protection	98	Auto Start Bus Cyc	Motor Manageme
49	Cooling Time	Protection	99	Auto Stop Bus Cyc	Motor Manageme
50	Restart Level	Protection	100	Auto Start DI	Motor Manageme
51	Aux Inp 1 Ack Mode	Aux Input Block	101	Auto Stop DI	Motor Manageme
52	Aux Inp 2 Ack Mode	Aux Input Block	102	Auto Start LCD	Motor Manageme
53	Aux Inp 3 Ack Mode	Aux Input Block	103	Auto Stop LCD	Motor Manageme
54	Aux Inp 4 Ack Mode	Aux Input Block	104	Auto Start Bus Acyc	Motor Manageme
55	Aux Inp 5 Ack Mode	Aux Input Block	105	Auto Stop Bus Acyc	Motor Manageme
56	Aux Inp 6 Ack Mode	Aux Input Block	106	Loc 2 Start Bus Cyc	Motor Manageme

No	Name	Parameter Group
107	Loc 2 Stop Bus Cyc	Motor Management
108	Loc 2 Start DI	Motor Management
109	Loc 2 Stop DI	Motor Management
110	Loc 2 Start LCD	Motor Management
111	Loc 2 Stop LCD	Motor Management
112	Loc 2 Start Bus Acyc	Motor Management
113	Loc 2 Stop Bus Acyc	Motor Management
114	Multif In 0	Motor Management
115	Multif In 1	Motor Management
116	Multif In 2	Motor Management
117	Multif In 0 Delay	Motor Management
118	Multif In 1 Delay	Motor Management
119	Multif In 2 Delay	Motor Management
120	Multif In 0 Autoreset	Motor Management
121	Multif In 1 Autoreset	Motor Management
122	Multif In 2 Autoreset	Motor Management
123	Language	Display
124	Tagname	Display
125	Backlight	Display
126	Password Protection	Display
128	User Display 1	Display
129	User Display 2	Display
130	User Display 3	Display
131	User Display 4	Display

	N	Demonster Original
No	Name	Parameter Group
132	User Display 5	Display
133	User Display 4 Text	Display
134	User Display 5 Text	Display
135	Multif In 0 Message L1	Motor Management
136	Multif In 0 Message L2	Motor Management
137	Multif In 1 Message L1	Motor Management
138	Multif In 1 Message L2	Motor Management
139	Multif In 2 Message L1	Motor Management
140	Multif In 2 Message L2	Motor Management
142	Dip Enable	Protection
143	Dip Duration	Protection
144	Dip Autorestart Win- dow	Protection
145	Dip Autorestart Delay	Protection
146	Thermal Load Warnlev	Protection
147	Dip Autorestart Enable	Protection
151	DX1xx DI Delay	IO Module Param- eters
152	DX1xx AO Type	IO Module Param- eters
153	DX1xx AO Err Reac	IO Module Param- eters
1000	Parameter Lock	Communication
1001	Busaddress	Communication

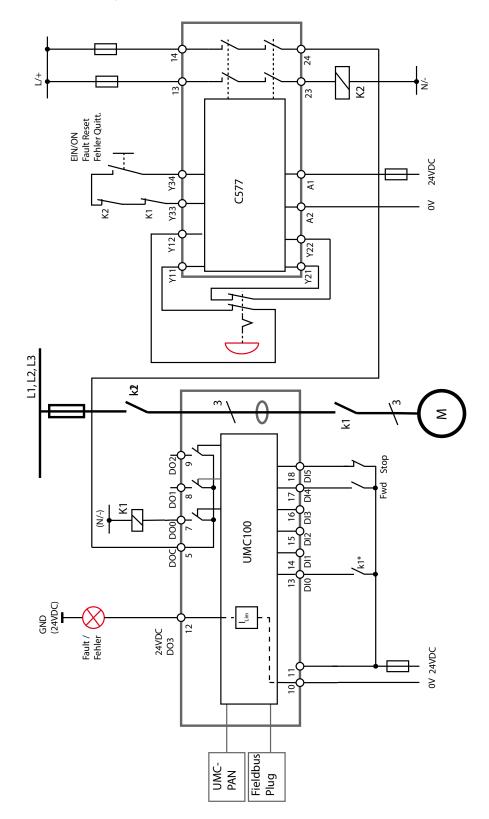
V 6

All Parameters Sorted Alphabetically

No	Name	Parameter Group	
17	Address Check	Communication	
104	Auto Start Bus Acyc	Motor Management	
98	Auto Start Bus Cyc	Motor Management	
100	Auto Start DI	Motor Management	
102	Auto Start LCD	Motor Management	
105	Auto Stop Bus Acyc	Motor Management	
99	Auto Stop Bus Cyc	Motor Management	
101	Auto Stop DI	Motor Management	
103	Auto Stop LCD	Motor Management	
51	Aux Inp 1 Ack Mode	Aux Input Block	
75	Aux Inp 1 Delay	Aux Input Block	
63	Aux Inp 1 Message L1	Aux Input Block	
64	Aux Inp 1 Message L2	Aux Input Block	
57	Aux Inp 1 Reaction	Aux Input Block	
52	Aux Inp 2 Ack Mode	Aux Input Block	
76	Aux Inp 2 Delay	Aux Input Block	
65	Aux Inp 2 Message L1	Aux Input Block	
66	Aux Inp 2 Message L2	Aux Input Block	
58	Aux Inp 2 Reaction	Aux Input Block	
53	Aux Inp 3 Ack Mode	Aux Input Block	
77	Aux Inp 3 Delay	Aux Input Block	
67	Aux Inp 3 Message L1	Aux Input Block	
68	Aux Inp 3 Message L2	Aux Input Block	
59	Aux Inp 3 Reaction	Aux Input Block	
54	Aux Inp 4 Ack Mode	Aux Input Block	
78	Aux Inp 4 Delay	Aux Input Block	
69	Aux Inp 4 Message L1	Aux Input Block	
70	Aux Inp 4 Message L2	Aux Input Block	
60	Aux Inp 4 Reaction	Aux Input Block	
55	Aux Inp 5 Ack Mode	Aux Input Block	
79	Aux Inp 5 Delay	Aux Input Block	
71	Aux Inp 5 Message L1	Aux Input Block	
72	Aux Inp 5 Message L2	Aux Input Block	
61	Aux Inp 5 Reaction	Aux Input Block	
56	Aux Inp 6 Ack Mode	Aux Input Block	
80	Aux Inp 6 Delay	Aux Input Block	
73	Aux Inp 6 Message L1	Aux Input Block	
74	Aux Inp 6 Message L2	Aux Input Block	
62	Aux Inp 6 Reaction	Aux Input Block	
125	Backlight	Display	
1001	Busaddress	Communication	
18	Busfault Reaction	Communication	
46	Check Phase Sequence	Protection	
22	Check-Back	Motor Management	
23	Check-Back Time	Motor Management	

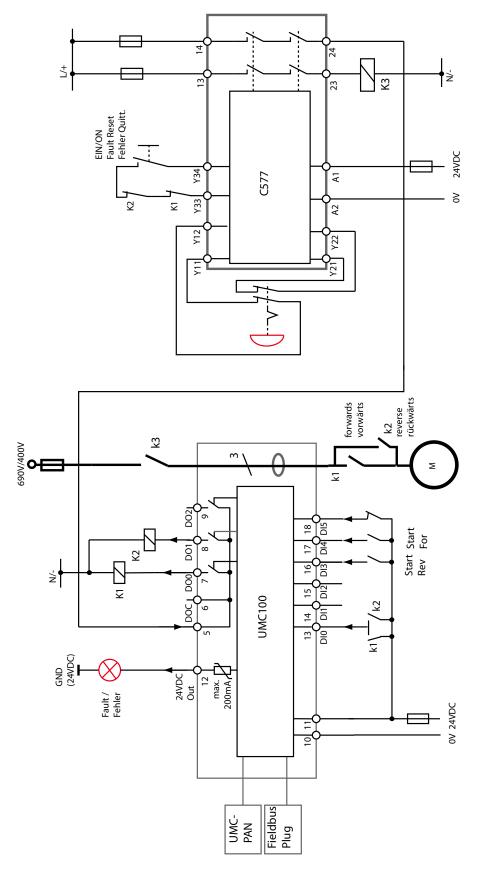
20	Control Function	Motor Management
48	Cooling Mode	Protection
49	Cooling Time	Protection
31	Current Factor	Protection
81	Custom App Parameter	Motor Management
145	Dip Autorestart Delay	Protection
147	Dip Autorestart Enable	Protection
144	Dip Autorestart Window	Protection
143	Dip Duration	Protection
142	Dip Enable	Protection
153	DX1xx AO Err Reac	IO Module Param- eters
152	DX1xx AO Туре	IO Module Param- eters
151	DX1xx DI Delay	IO Module Param- eters
1	DX1xx Enabled	IO Module Param- eters
15	Emergency Start	Motor Management
19	Enable Custom Logic	Motor Management
14	Fault Auto Reset	Motor Management
27	Fault Output	Motor Management
37	High Curr Trip Delay	Protection
36	High Curr Trip Level	Protection
39	High Curr Warn Delay	Protection
38	High Curr Warn Level	Protection
86	Inching DI Start Inp	Motor Management
82	Invert DI Start Inp.	Motor Management
83	Invert DI Stop Inp.	Motor Management
123	Language	Display
96	Loc 1 Start Bus Acyc	Motor Management
90	Loc 1 Start Bus Cyc	Motor Management
92	Loc 1 Start DI	Motor Management
94	Loc 1 Start LCD	Motor Management
97	Loc 1 Stop Bus Acyc	Motor Management
91	Loc 1 Stop Bus Cyc	Motor Management
93	Loc 1 Stop DI	Motor Management
95	Loc 1 Stop LCD	Motor Management
112	Loc 2 Start Bus Acyc	Motor Management
106	Loc 2 Start Bus Cyc	Motor Management
108	Loc 2 Start DI	Motor Management
110	Loc 2 Start LCD	Motor Management
113	Loc 2 Stop Bus Acyc	Motor Management
107	Loc 2 Stop Bus Cyc	Motor Management
109	Loc 2 Stop DI	Motor Management

40	Locked Rotor Level	Protection	[126	Password Pr
33	Low Curr Trip Delay	Protection		43	Phase Imb T
32	Low Curr Trip Level	Protection		44	Phase Imb V
35	Low Curr Warn Delay	Protection	[42	Phase Loss I
34	Low Curr Warn Level	Protection	1 [45	Phase Rever
8	Missing Module React.	IO Module Param-		9	PTC, Thermi
		eters	[50	Restart Leve
114	Multif In 0	Motor Management	[21	Rev Lock-Ou
120	Multif In 0 Autoreset	Motor Management		29	Setting le 1
117	Multif In 0 Delay	Motor Management		30	Setting le 2
135	Multif In 0 Message L1	Motor Management		124	Tagname
136	Multif In 0 Message L2	Motor Management		146	Thermal Loa
115	Multif In 1	Motor Management		28	Trip Class
121	Multif In 1 Autoreset	Motor Management		128	User Display
118	Multif In 1 Delay	Motor Management		129	User Display
137	Multif In 1 Message L1	Motor Management		130	User Display
138	Multif In 1 Message L2	Motor Management		131	User Display
116	Multif In 2	Motor Management		133	User Display
122	Multif In 2 Autoreset	Motor Management		132	User Display
119	Multif In 2 Delay	Motor Management		134	User Display
139	Multif In 2 Message L1	Motor Management		24	YD Change-
140	Multif In 2 Message L2	Motor Management		25	YD Starting
1000	Parameter Lock	Communication	╎└	_~	· · · · · · · · · · · · · · · · · · ·


126	Password Protection	Display
43	Phase Imb Trip Level	Protection
44	Phase Imb Warn Level	Protection
42	Phase Loss Prot.	Protection
45	Phase Reversal	Protection
9	PTC, Thermistor	Protection
50	Restart Level	Protection
21	Rev Lock-Out Time	Motor Management
29	Setting le 1	Protection
30	Setting le 2	Protection
124	Tagname	Display
146	Thermal Load Warnlev	Protection
28	Trip Class	Protection
128	User Display 1	Display
129	User Display 2	Display
130	User Display 3	Display
131	User Display 4	Display
133	User Display 4 Text	Display
132	User Display 5	Display
134	User Display 5 Text	Display
24	YD Change-Over Mode	Motor Management
25	YD Starting Time	Motor Management

A2 Examples of Circuit Diagrams

Direct Starter, Category 4


V 6

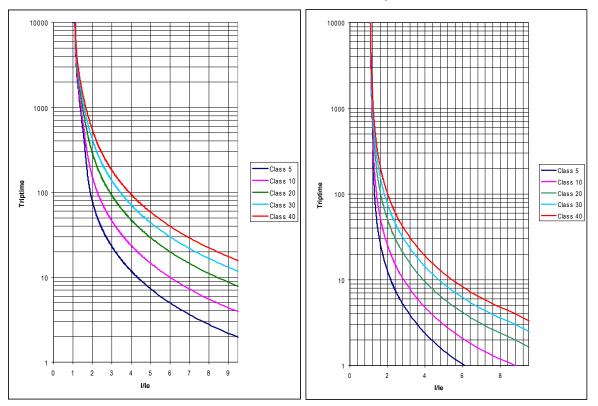
Circuit diagram showing safe-tripping with the help of an emergency stop relay. Carefully read the C577 manual on how to use this device.

Reversing Starter, Category 4

Circuit diagram showing safe-tripping with the help of an emergency stop relay. Carefully read the C577 manual on how to use this device.

A3 Technical Data

UMC100


Voltage (three-phase systems)	Max. 1000 V AC		
	Attention: For an U_{imp} of 6 kV and a voltage of 1000 V the device must be used according to Annex H EN60947-1 in the range 600 V < U_{e} <= 1000 V.		
	(IT Network) only for overvoltage category II. Otherwise overvoltage category III applies.		
Conductor holes in the current transformers	Max. 25 mm ² (max. diameter incl. insulation 11 mm)		
Set current range for overload protection	UMC alone: 0.24-63 A		
	UMC with provided current transformer: 50-850 A (see chapter 'Connecting External Current Transformers')		
Overload protection for three-phase motors	Acc. to EN/IEC 60947-4-1		
Trip classes, selectable by parameter	5, 10, 20, 30, 40* (acc. to EN/IEC 60947-4-1)		
	*) for over-currents $> 6xl_{e}$ the trip time is 10% faster than specified in the standard.		
Tolerance of tripping time (incl. total ranges of cur-	UMC alone: +/- 10 %		
rent, temperature 0-60°C, frequency 45-65 Hz)	UMC with provided current transformer: +/- 14 %		
Tripping time for phase loss	Trip class: 5 approx. 1.5 s 10 approx. 3 s 20 approx. 6 s 30 approx. 9 s 40 approx. 12 s		
Accuracy class of the monitored current (range 50	UMC alone 3%		
to 200 % of I _e)	UMC with provided external current transformer: 4%		
Load per phase:	Approx. 30 milli Ω		
Frequency range	45-65 Hz. Protection of frequency converters is not allowed.		
Short-circuit protection	Provided by external short-circuit protection de- vice), e.g. MO, MCB, MCCB or fuse. Refer also to ABB coordination tables available here: http://www.abbcontrol.fr/coordination_tables/ TABLES5.asp		
Cross-section of lines	Acc. to the rated motor current referring EN/IEC 60947-1 and the specific installation condition in EN/IEC 60204 or VDE 298-4 resp.		
Vibration according IEC 60068-2-6	1g		

Tripping time for cold motor for 3-phase symmetrical loads

Tripping time for warm motor for 3-phase symmetrical loads

(motor current Ic/Ie = 100 % for long time before overloading

Controller Unit		
Supply voltage	24 V DC (+30 %20 %) (19.2 31.2 V DC) including ripple	
Supply current (incl. DIs, relays activated, transi- stor output loaded with 200mA)	Max. 360 mA (at 19.2 31.2 V DC)	
Total power dissipation	Max. 9 W	
Reverse polarity protection	Yes	
LEDs: Red/yellow/green	Red: Motor has been tripped due to a thermal overload condition or another fault.	
	Yellow: Motor is running	
	Green: Ready for operation	

Digital Inputs		
Number of digital inputs	6 (DI0 DI5) Type 1 accord. to EN 61131-2	
Supply for digital inputs	24 V DC	
	Note: Input value of the UMC100 DIs is undefined if the UMC supply is outside the specified limits.	
Isolation	No	
Input signal bounce suppression	Typ. 2 ms	
Signal 0 range including ripple	-31.2 +5 V	
Signal 1 range including ripple	+15 +31.2 V	
Input current per channel (24 V DC)	Typ. 6.0 mA	

Universal Motor Controller UMC100-FBP

Digital Inputs		
Input resistor to 0 V	3.9 kΩ	
Cable length	unshielded max. 600 m shielded max. 1000 m	

Relay Outputs	
Number of relay outputs	3 x monostable with one common root
Voltage range of contacts	12-250 V AC/DC
Lowest switched power for correct signals	1 W or 1 VA
Switching capacity per relay contact acc. to EN 60947-5-1 (electromagnetic load)	AC-15 240 V AC: max. 1,5 A AC-15 120 V AC: max. 3 A DC-13 250 V DC max. 0.11 A DC-13 125 V DC max. 0.22 A DC-13 24 V DC max. 1 A
Short-circuit protection	6 A gL / gG
Switching of inductive power	Inductive loads need additional measures for spark suppression. Diodes for DC voltage and va- ristors / RC elements for AC voltage are suitable. Some DC coil contactors contain rectifiers which suppress sparks perfectly.
Relay contact service life	Mechanical 500 000 switching cycles
	Electrical (250 V AC): 0.5 A: 100 000 cycles 1.5 A 50 000 switching
Internal clearance and creepage distances relay contacts to 24 V circuits	> 5.5 mm (safety insulation up to 250 V AC)(EN 60947-1, Pollution degree 2)
Supply power down/up, behaviour: Valid for all motor control functions, but not for transparent and overload relay.	Whenever the supply voltage of the UMC is switched off and on, the starting of the motor needs a new RUN signal.

Digital Output		
Max. output current	200mA	
Short circuit protected	Yes	
Output voltage if high	UMC100 supply voltage, nominal 24VDC	
Isolation	No	

Thermistor Motor Protection (PTC - binary)	
Broken wire resistance	> 4.8 kΩ
Response resistance	3.4 - 3.8 kΩ
Reset resistance	1.5 - 1.8 kΩ
Response time	800 ms
Max. cold resistance of PTC sensor chain	< 1.5 kΩ
Line length	2.5 mm ² : 2 x 250 m 1.5 mm ² : 2 x 150 m 0.5 mm ² : 2 x 50 m
Isolation	No

Г

Fieldbus Connection	
Mounting	Plug connection, fastening with supplied screw
Tightening torque of the fixing screw	0.8 Nm + rotation 90 degree
Suitable ABB FieldBusPlug types for	PROFIBUS: PDP22-FBP or PDQ22 Modbus: MRP21 DeviceNet: DNR21 CANopen: COP21

Environmental and mechanical data	
Mounting	On DIN rail (EN 50022-35) or with 4 screws M4
Mounting position	Any
Dimensions (W x H x D)	70 x 105 x 110 mm (incl. FieldBusPlug and Control Panel)
Net weight	0.282 kg (current transformer + controller unit)
Wire size and tightening torque	0.5 Nm ø 3,5 mm / 0.138 in
	7mm 0.28 in 2x 0.2 2,5mm ² 2x 28 12 AWG
	7mm 0.28 in
Tightening torque for screw mounting	0.8 Nm
Degree of protection	UMC: IP20
Temperature range	Storage -25 +70 °C Operation 0 +60 °C
Marks, Approvals	CE, cUL, Further in preparation. Ask your local sales representative for other approvals.

Performance Data

Reaction time UMC100 DI to UMC100 Relay Out- put (incl. hardware delays).	typ. 10ms (Transparent Control Function)
Reaction time UMC100 DI to DX111 Relay Output (incl. hardware delays) Reaction time from DX111 DI to UMC100 Relay Ouput (incl. hardware delays)	typ. 10 ms (Transparent Control Function) typ. 14 ms (Transparent Control Function)
Number of supported function blocks:	See 2CDC 135 014 D02xx

UMC100-PAN

V 6

Installation	Installation in a switchgear cabinet door or on a front panel.
Degree of protection	IP54 (on front side)
LEDs: Red/Yellow/Green	By default the LEDs have the same meaning as the ones on the UMC100.
	Red: Error Yellow: Motor is running Green: Ready for operation
Buttons	6 buttons with fixed meaning
Dimensions (WxHxD)	50 x 66 x 15 mm
Net weight	0,039 kg
Temperature range	Storage -25 +70 °C Operation 0 +55 °C
Tightening Torque for screw mounting	0.5 Nm

DX111 and DX122

General	
Mounting	Snap-on mounting onto 35 mm standard mount- ing rails
Mounting position	Any
Dimensions (W x H x D)	45 x 77 x 100 mm (excluding communication connector)
LEDs: Red/yellow/green	Red: Hardware error of module Yellow: Diagnosis available Green: Ready for operation
Supply voltage	24 V DC (+30 %20 %) (19.2 31.2 V DC) including ripple
Supply current	Max. 90mA (at 19.2 31.2 V DC)
Tightening torque for the input, output and supply terminals	0.6 0.8 Nm 6 4,5 mm / 0.177 m / PH 1
	7mm 0.28 in 2 x 0.5 4 mm ² 2 x 20 12 AWG
	7mm 0.28 in 2 x 0.75 2.5 mm ² 2 x 18 14 AWG
	7mm 0.28 in 2 x 0.75 2.5 mm ² 2 x 18 14 AWG

General		
Tightening torque for the communication terminals	ø 1,5 mm	0.22 Nm
	^{7mm} *0.28 in *	1 x 0.14 1.5 mm² 28 16 AWG
	⁷ mm *0.28 in *	1 x 0.14 1.5 mm² 28 16 AWG
Networks	7mm *0.28 in *	1 x 0.25 0.5 mm² 28 16AWG
Net weight	0.22 kg	
Degree of protection	IP20	
Temperature range	storage -25 +70 °C operation 0 +55 °C (DX122) / ·	+60 °C (DX111)
Marks, Approvals	CE, cUL Furher in preparation. Ask your lo sentative for other marks/approv	

Relay Outputs	
Number of relay outputs	4
	1DO1, 1DO2 with root 1DOC 2DO3, 2DO4 with root 2DOC
Voltage range of contacts	12-250 V AC/DC
Short-circuit protection	6 A gL / gG per root (1DOC, 2DOC)
Lowest switched power for correct signals	1 W or 1 VA
Switching of inductive power	Inductive loads need additional measures for spark suppression. Diodes for DC voltage and varistors / RC elements for AC voltage are suit- able. Some DC coil contactors contain rectifiers which suppress sparks perfectly.
Switching capacity per relay contact acc. to EN 60947-5-1 (electromagnetic load)	AC-15 240 V AC: max. 1,5 A AC-15 120 V AC: max. 3 A DC-13 250 V DC max. 0.11 A DC-13 125 V DC max. 0.22 A DC-13 24 V DC max. 1 A
Relay contact service life	Mechanical 500 000 switching cycles Electrical (250 V AC): 0.5 A: 100 000 cycles 1.5 A 50 000 switching
Internal clearance and creepage distances of relay contacts to 24 V circuits	> 5.5 mm (safety insulation up to 250 V AC)(EN 60947-1, Pollution degree 2)

Digital Inputs DX111	
Number of digital inputs	8 externally supplied, isolated inputs Type 1 accord. to EN 61131-1
	1DI0 1DI4 with common root 1DIZ 2DI5 2DI7 with common root 2DIZ
Supply for digital inputs	24 V DC
Isolation	Yes
Input signal bounce suppression	Typ. 6ms
Signal 0 range including ripple	-31.2 +5 V
Signal 1 range including ripple	+15 +31.2 V
Input current per channel (24 V DC)	Typ. 6.0 mA
Input resistor to 0 V	3.9 κΩ
Cable length	unshielded max. 600 m shielded max. 1000 m

Digital Inputs DX122	
Number of digital inputs	8 externally supplied, isolated inputs Type 2 accord. to EN 61131-1
	1DI0 1DI4 with common root 1DIZ 2DI5 2DI7 with common root 2DIZ
Supply for digital inputs	110 V AC - 240 V AC
Isolation	Yes
Input signal bounce suppression	Typ. 20 ms
Signal 0 range including ripple	0 40 V AC
Signal 1 range including ripple	74 265 V AC
Frequency range	45 65 Hz
Input current per channel (230V AC)	Typ. 10 mA

Analogue Output	
Type of connection	2-wire connection to display e.g. the motor current on an analogue meter.
Configurable output range	0-10mA, 0/4 mA - 20 mA, 0-10 V
Cable shielding	Recommended for up to 30 m and outside the switchgear cabinet; shielding mandatory for cables over 30 m
Max. output voltage	10V
Accuracy	< 5%
Max. output load	500 Ω (if configured as current output)
Min. output load	$1k\Omega$ (if configured as voltage output)
Resolution	8 bit
Short-circuit-proof	Yes
Open-wire detection Short-circuit detection	Yes, if configured as 0/4-20 mA output Yes, if configured as 0-10V output
Isolation	No

FAX No.: +49 (0) 6221-701-1382

Detected an Error?

Your feedback helps us to constantly improve our products. We are grateful for your comments and suggestions. Please provide us with the following information if you have noticed an issue:

Name

V6

Company / Department

Telephone / Email

Problem Description

- Steps to reproduce the problem
- Version of UMC (Ident number on nameplate and firmware version which is displayed on the UMC100-PAN)
- Version of PBDTM (ControlPanel->Sofware) / AssetVisionBasic (Help->About) / Windows (Control->System)

ABB STOTZ-KONTAKT GmbH

Eppelheimer Straße 82Postfach 10168069123 Heidelberg69006 HeidelbergGermanyGermany

 Telephone
 +49 (0) 6221 701- 0

 Telefax
 +49 (0) 6221 701- 240

 E-mail
 automation-helpline.desto@de.abb.com

 Internet
 http://www.abb.de/stotz-kontakt